Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration.

  • B W Jones‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photoreceptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies.


Retinal remodeling in human retinitis pigmentosa.

  • B W Jones‎ et al.
  • Experimental eye research‎
  • 2016‎

Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.


Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration.

  • M J Seiler‎ et al.
  • The European journal of neuroscience‎
  • 2012‎

Retinal progenitor sheet transplants have been shown to extend neuronal processes into a degenerating host retina and to restore visual responses in the brain. The aim of this study was to identify cells involved in transplant signals to retinal degenerate hosts using computational molecular phenotyping (CMP). S334ter line 3 rats received fetal retinal sheet transplants at the age of 24-40 days. Donor tissues were incubated with slow-releasing microspheres containing brain-derived neurotrophic factor or glial cell-derived neurotrophic factor. Up to 265 days after surgery, eyes of selected rats were vibratome-sectioned through the transplant area (some slices stained for donor marker human placental alkaline phosphatase), dehydrated and embedded in Eponate, sectioned into serial ultrathin datasets and probed for rhodopsin, cone opsin, CRALBP (cellular retinaldehyde binding protein), l-glutamate, l-glutamine, glutathione, glycine, taurine, γ-aminobutyric acid (GABA) and DAPI (4',6-diamidino-2-phenylindole). In large transplant areas, photoreceptor outer segments in contact with host retinal pigment epithelium revealed rod and cone opsin immunoreactivity whereas no such staining was found in the degenerate host retina. Transplant photoreceptor layers contained high taurine levels. Glutamate levels in the transplants were higher than in the host retina whereas GABA levels were similar. The transplant inner nuclear layer showed some loss of neurons, but amacrine cells and horizontal cells were not reduced. In many areas, glial hypertrophy between the host and transplant was absent and host and transplant neuropil appeared to intermingle. CMP data indicate that horizontal cells and both glycinergic and GABAergic amacrine cells are involved in a novel circuit between transplant and host, generating alternative signal pathways between transplant and degenerating host retina.


Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration.

  • Robert E Marc‎ et al.
  • Molecular vision‎
  • 2008‎

Our objective was to comprehensively assess the nature and chronology of neural remodeling in retinal degenerations triggered by light-induced retinal damage (LIRD) in adult albino rodents. Our primary hypothesis is that all complete photoreceptor degenerations devolve to extensive remodeling. An hypothesis emergent from data analysis is that the LIRD model closely mimics late-stage atrophic age relared macular degeneration (AMD).


glial cells missing: a genetic switch that controls glial versus neuronal fate.

  • B W Jones‎ et al.
  • Cell‎
  • 1995‎

The glial cells missing (gcm) gene in Drosophila encodes a novel nuclear protein that is transiently expressed early in the development of nearly all glia. In loss-of-function gcm mutant alleles, nearly all glia fail to differentiate, and, where we can follow them in the PNS, are transformed into neurons. In gain-if-function gcm conditions using transgenic constructs that drive ectopic gcm expression, many presumptive neurons are transformed into glia. Thus, gcm appears to function as a binary genetic switch for glia versus neurons. In the presence of gcm protein, presumptive neurons become glia, while in its absence, presumptive glia become neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: