Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Inhibition of Japanese encephalitis virus replication in cultured cells and mice by a peptide-conjugated morpholino oligomer.

  • Manu Anantpadma‎ et al.
  • The Journal of antimicrobial chemotherapy‎
  • 2010‎

Japanese encephalitis virus (JEV) has a significant impact on public health throughout Asia, and there is a pressing need for development of new therapeutics against it.


Treatment of AG129 mice with antisense morpholino oligomers increases survival time following challenge with dengue 2 virus.

  • David A Stein‎ et al.
  • The Journal of antimicrobial chemotherapy‎
  • 2008‎

To determine the antiviral activity of phosphorodiamidate morpholino oligomers (PMO) and peptide-conjugated PMO (PPMO) in AG129 mice infected with dengue 2 virus (DENV-2).


Human host factors required for influenza virus replication.

  • Renate König‎ et al.
  • Nature‎
  • 2010‎

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host-pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-beta. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIbeta (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


A Potent Anti-influenza Compound Blocks Fusion through Stabilization of the Prefusion Conformation of the Hemagglutinin Protein.

  • Kris M White‎ et al.
  • ACS infectious diseases‎
  • 2015‎

An ultrahigh-throughput screen was performed to identify novel small molecule inhibitors of influenza virus replication. The screen employed a recombinant influenza A/WSN/33 virus expressing Renilla luciferase and yielded a hit rate of 0.5%, of which the vast majority showed little cytotoxicity at the inhibitory concentration. One of the top hits from this screen, designated S20, inhibits HA-mediated membrane fusion. S20 shows potent antiviral activity (IC50 = 80 nM) and low toxicity (CC50 = 40 μM), yielding a selectivity index of 500 and functionality against all of the group 1 influenza A viruses tested in this study, including the pandemic H1N1 and avian H5N1 viruses. Mechanism of action studies proved a direct S20-HA interaction and showed that S20 inhibits fusion by stabilizing the prefusion conformation of HA. In silico docking studies were performed, and the predicted binding site in HA2 corresponds with the area where resistance mutations occurred and correlates with the known role of this region in fusion. This high-throughput screen has yielded many promising new lead compounds, including S20, which will potentially shed light on the molecular mechanisms of viral infection and serve as research tools or be developed for clinical use as antivirals.


Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding.

  • Shashank Tripathi‎ et al.
  • Cell host & microbe‎
  • 2015‎

Several systems-level datasets designed to dissect host-pathogen interactions during influenza A infection have been reported. However, apparent discordance among these data has hampered their full utility toward advancing mechanistic and therapeutic knowledge. To collectively reconcile these datasets, we performed a meta-analysis of data from eight published RNAi screens and integrated these data with three protein interaction datasets, including one generated within the context of this study. Further integration of these data with global virus-host interaction analyses revealed a functionally validated biochemical landscape of the influenza-host interface, which can be queried through a simplified and customizable web portal (http://www.metascape.org/IAV). Follow-up studies revealed that the putative ubiquitin ligase UBR4 associates with the viral M2 protein and promotes apical transport of viral proteins. Taken together, the integrative analysis of influenza OMICs datasets illuminates a viral-host network of high-confidence human proteins that are essential for influenza A virus replication.


Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers.

  • Kelly L Warfield‎ et al.
  • PLoS pathogens‎
  • 2006‎

The filoviruses Marburg virus and Ebola virus (EBOV) quickly outpace host immune responses and cause hemorrhagic fever, resulting in case fatality rates as high as 90% in humans and nearly 100% in nonhuman primates. The development of an effective therapeutic for EBOV is a daunting public health challenge and is hampered by a paucity of knowledge regarding filovirus pathogenesis. This report describes a successful strategy for interfering with EBOV infection using antisense phosphorodiamidate morpholino oligomers (PMOs). A combination of EBOV-specific PMOs targeting sequences of viral mRNAs for the viral proteins (VPs) VP24, VP35, and RNA polymerase L protected rodents in both pre- and post-exposure therapeutic regimens. In a prophylactic proof-of-principal trial, the PMOs also protected 75% of rhesus macaques from lethal EBOV infection. The work described here may contribute to development of designer, "druggable" countermeasures for filoviruses and other microbial pathogens.


Phase Transitions Drive the Formation of Vesicular Stomatitis Virus Replication Compartments.

  • Bianca S Heinrich‎ et al.
  • mBio‎
  • 2018‎

RNA viruses that replicate in the cell cytoplasm typically concentrate their replication machinery within specialized compartments. This concentration favors enzymatic reactions and shields viral RNA from detection by cytosolic pattern recognition receptors. Nonsegmented negative-strand (NNS) RNA viruses, which include some of the most significant human, animal, and plant pathogens extant, form inclusions that are sites of RNA synthesis and are not circumscribed by a membrane. These inclusions share similarities with cellular protein/RNA structures such as P granules and nucleoli, which are phase-separated liquid compartments. Here we show that replication compartments of vesicular stomatitis virus (VSV) have the properties of liquid-like compartments that form by phase separation. Expression of the individual viral components of the replication machinery in cells demonstrates that the 3 viral proteins required for replication are sufficient to drive cytoplasmic phase separation. Therefore, liquid-liquid phase separation, previously linked to organization of P granules, nucleolus homeostasis, and cell signaling, plays a key role in host-pathogen interactions. This work suggests novel therapeutic approaches to the problem of combating NNS RNA viral infections.IMPORTANCE RNA viruses compartmentalize their replication machinery to evade detection by host pattern recognition receptors and concentrate the machinery of RNA synthesis. For positive-strand RNA viruses, RNA replication occurs in a virus-induced membrane-associated replication organelle. For NNS RNA viruses, the replication compartment is a cytoplasmic inclusion that is not circumscribed by a cellular membrane. Such structures were first observed in the cell bodies of neurons from humans infected with rabies virus and were termed Negri bodies. How the replication machinery that forms this inclusion remains associated in the absence of a membrane has been an enduring mystery. In this article, we present evidence that the VSV replication compartments form through phase separation. Phase separation is increasingly recognized as responsible for cellular structures as diverse as processing bodies (P-bodies) and nucleoli and was recently demonstrated for rabies virus. This article further links the fields of host-pathogen interaction with that of phase separation.


Inhibition of replication and transcription activator and latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus by morpholino oligomers.

  • Yan-Jin Zhang‎ et al.
  • Antiviral research‎
  • 2007‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma and primary effusion lymphoma (PEL). The KSHV replication and transcription activator (RTA) and latency-associated nuclear antigen (LANA) play key roles in activating KSHV lytic replication and maintaining KSHV latency, respectively. Phosphorodiamidate morpholino oligomers (PMO) are similar to short single-stranded DNA oligomers, but possess a modified backbone that confers highly specific binding and resistance to nucleases. In this study, RTA and LANA mRNA in PEL cells were targeted by antisense peptide-conjugated PMO (P-PMO) in an effort to suppress KSHV replication. Highly efficient P-PMO uptake by PEL cells was observed. Treatment of PEL cells with a RTA P-PMO (RP1) reduced RTA expression in a dose-dependent and sequence-specific manner, and also caused a significant decrease in several KSHV early and late gene products, including vIL-6, vIRF-1, and ORF-K8.1A. KSHV viral DNA levels were reduced both in cells and culture supernatants of RP1 P-PMO-treated cells, indicating that KSHV lytic replication was suppressed. Treatment of BCBL-1 cells with P-PMO against LANA resulted in a reduction of LANA expression. Cell viability assays detected no cytotoxicity from P-PMO alone, within the concentration range used for the experiments in this study. These results suggest that RP1 P-PMO can specifically block KSHV replication, and further study is warranted.


Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation.

  • Stephen Soonthornvacharin‎ et al.
  • Nature microbiology‎
  • 2017‎

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.


Epidemiological Profile and Risk Factors for Acquiring HBV and/or HCV in HIV-Infected Population Groups in Nepal.

  • Manjula Bhattarai‎ et al.
  • BioMed research international‎
  • 2018‎

HBV and HCV infections are widespread among the HIV-infected individuals in Nepal. The goals of this study were to investigate the epidemiological profile and risk factors for acquiring HBV and/or HCV coinfection in disadvantaged HIV-positive population groups in Nepal. We conducted a retrospective study on blood samples from HIV-positive patients from the National Public Health Laboratory at Kathmandu to assay for HBsAg, HBeAg, and anti-HCV antibodies, HIV viral load, and CD4+ T cell count. Among 579 subjects, the prevalence of HIV-HBV, HIV-HCV, and HIV-HBV-HCV coinfections was 3.62%, 2.93%, and 0.34%, respectively. Multivariate regression analysis indicated that spouses of HIV-positive migrant labourers were at significant risk for coinfection with HBV infection, and an age of >40 years in HIV-infected individuals was identified as a significant risk factor for HCV coinfection. Overall our study indicates that disadvantaged population groups such as intravenous drug users, migrant workers and their spouses, female sex workers, and men who have sex with HIV-infected men are at a high and persistent risk of acquiring viral hepatitis. We conclude that Nepalese HIV patients should receive HBV and HCV diagnostic screening on a regular basis.


Integrated safety of levodopa-carbidopa intestinal gel from prospective clinical trials.

  • Anthony E Lang‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2016‎

Continuous administration of levodopa-carbidopa intestinal gel (carbidopa-levodopa enteral suspension) through a percutaneous endoscopic gastrojejunostomy is a treatment option for advanced Parkinson disease (PD) patients with motor fluctuations resistant to standard oral medications. Safety data from 4 prospective studies were integrated to assess the safety of this therapy.


Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18.

  • Masashi Kohno‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

An orphan G-protein-coupled receptor, GPR18, was cloned on the basis of degenerate-oligonucleotide PCR analysis of HUT 102 cells using primers designed from the conservative regions of the human chemokine receptor. GPR18 was expressed significantly in lymphoid cell lines, but not in non-lymphoid hematopoietic cell lines. Moreover, the expression of the GPR18 gene was higher in peripheral lymphocyte subsets (CD4(+), CD4(+)CD45RA(+), CD4(+)CD45RO(+), CD8(+), and CD19(+)) than in monocytes and lymphoid cell lines, and was increased after stimulation with phytohemagglutinin. By screening using a lipid library, N-arachidonylglycine (NAGly) induced an increase in intracellular Ca(2+) concentration in GPR18-transfected cells, which was significantly greater than that in mock-transfected cells. NAGly also inhibited forskolin-induced cAMP production in a pertussis toxin-sensitive manner in the GPR18-transfected CHO cells. This is the first study to demonstrate that NAGly is a natural ligand for GPR18.


Inhibition of alphavirus infection in cell culture and in mice with antisense morpholino oligomers.

  • Slobodan Paessler‎ et al.
  • Virology‎
  • 2008‎

The genus Alphavirus contains members that threaten human health, both as natural pathogens and as potential biological weapons. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) enter cells readily and can inhibit viral replication through sequence-specific steric blockade of viral RNA. Sindbis virus (SINV) has low pathogenicity in humans and is regularly utilized as a model alphavirus. PPMO targeting the 5'-terminal and AUG translation start site regions of the SINV genome blocked the production of infectious SINV in tissue culture. PPMO designed against corresponding regions in Venezuelan equine encephalitis virus (VEEV) were likewise found to be effective in vitro against several strains of VEEV. Mice treated with PPMO before and after VEEV infection were completely protected from lethal outcome while mice receiving only post-infection PPMO treatment were partially protected. Levels of virus in tissue samples correlated with animal survival. Uninfected mice suffered no apparent ill-effects from PPMO treatment. Thus, PPMO appear promising as candidates for therapeutic development against alphaviruses.


Common and species-specific molecular signatures, networks, and regulators of influenza virus infection in mice, ferrets, and humans.

  • Christian V Forst‎ et al.
  • Science advances‎
  • 2022‎

Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets. Highly conserved gene coexpression modules across the three species are enriched for IAV infection-induced pathways including cell cycle and interferon (IFN) signaling. TDRD7 is predicted as an IFN-inducible host factor that is up-regulated upon IAV infection in the three species. TDRD7 is required for antiviral IFN response, potentially modulating IFN signaling via the JAK/STAT/IRF9 pathway. Identification of the common and species-specific molecular signatures, networks, and regulators of IAV infection provides insights into host-defense mechanisms and will facilitate the development of novel therapeutic interventions against IAV infection.


Characterization of the LP28 strain-specific exopolysaccharide biosynthetic gene cluster found in the whole circular genome of Pediococcus pentosaceus.

  • Tetsuya Yasutake‎ et al.
  • Biochemistry and biophysics reports‎
  • 2016‎

We have previously isolated a lactic acid bacterium (LAB), Pediococcus pentosaceus LP28, from the longan fruit Euphoria longana. Since the plant-derived LAB strain produces an extracellular polysaccharide (EPS), in this study, we analyzed the chemical structure and the biosynthesizing genes for the EPS. The EPS, which was purified from the LP28 culture broth, was classified into acidic and neutral EPSs with a molecular mass of about 50 kDa and 40 kDa, respectively. The acidic EPS consisted of glucose, galactose, mannose, and N-acetylglucosamine moieties. Interestingly, since pyruvate residue was detected in the hydrolyzed acidic EPS, one of the four sugars may be modified with pyruvate. On the other hand, the neutral EPS consisted of glucose, mannose, and N-acetylglucosamine; pyruvate was scarcely detected in the polysaccharide molecule. As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we determined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular DNA, which is composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%. We also found that the LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative polysaccharide pyruvyltransferase.


Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers.

  • Kyle Rosenke‎ et al.
  • The Journal of antimicrobial chemotherapy‎
  • 2021‎

As the causative agent of COVID-19, SARS-CoV-2 is a pathogen of immense importance to global public health. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense compounds composed of a phosphorodiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking.


Therapy for pneumonitis and sialadenitis by accumulation of CCR2-expressing CD4+CD25+ regulatory T cells in MRL/lpr mice.

  • Hitoshi Hasegawa‎ et al.
  • Arthritis research & therapy‎
  • 2007‎

Adoptive transfer of CD4+CD25+ regulatory T cells has been shown to have therapeutic effects in animal models of autoimmune diseases. Chemokines play an important role in the development of autoimmune diseases in animal models and humans. The present study was performed to investigate whether the progression of organ-specific autoimmune diseases could be reduced more markedly by accumulating chemokine receptor-expressing CD4+CD25+ regulatory T cells efficiently in target organs in MRL/MpJ-lpr/lpr (MRL/lpr) mice. CD4+CD25+Foxp3+ T cells (Treg cells) and CD4+CD25+Foxp3+ CCR2-transfected T cells (CCR2-Treg cells) were transferred via retro-orbital injection into 12-week-old MRL/lpr mice at the early stage of pneumonitis and sialadenitis, and the pathological changes were evaluated. Expression of monocyte chemoattractant protein-1 (MCP-1)/CCL2 was observed in the lung and submandibular gland of the mice and increased age-dependently. The level of CCR2 expression and MCP-1 chemotactic activity of CCR2-Treg cells were much higher than those of Treg cells. MRL/lpr mice to which CCR2-Treg cells had been transferred showed significantly reduced progression of pneumonitis and sialadenitis in comparison with MRL/lpr mice that had received Treg cells. This was due to more pronounced migration of CCR2-Treg cells and their localization for a longer time in MCP-1-expressing lung and submandibular gland, resulting in stronger suppressive activity. We prepared chemokine receptor-expressing Treg cells and demonstrated their ability to ameliorate disease progression by accumulating in target organs. This method may provide a new therapeutic approach for organ-specific autoimmune diseases in which the target antigens remain undefined.


Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3' stem-loop structure.

  • Katherine Lynn Holden‎ et al.
  • Virology‎
  • 2006‎

Dengue virus (DEN) is a major public health problem worldwide and causes a spectrum of diseases, for which no antiviral treatments exist. Peptide-conjugated phosphorodiamidate morpholino oligomers (P-PMOs) complementary to the DEN 5' stem-loop (5'SL) and to the DEN 3' cyclization sequence (3'CS) inhibit DEN replication, presumably by blocking critical RNA-RNA or RNA-protein interactions involved in viral translation and/or RNA synthesis. Here, a third P-PMO, complementary to the top of the 3' stem-loop (3'SLT), inhibited DEN replication in BHK cells. Using a novel DEN2 reporter replicon and a DEN2 reporter mRNA, we determined that the 5'SL P-PMO inhibited viral translation, the 3'CS P-PMO blocked viral RNA synthesis but not viral translation, and the 3'SLT P-PMO inhibited both viral translation and RNA synthesis. These results show that the 3'CS and the 3'SL domains regulate DEN translation and RNA synthesis and further demonstrate that P-PMOs are potentially useful as antiviral agents.


TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells.

  • Dorothea Bestle‎ et al.
  • Life science alliance‎
  • 2020‎

The novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site. We demonstrate that TMPRSS2 is essential for activation of SARS-CoV-2 S in Calu-3 human airway epithelial cells through antisense-mediated knockdown of TMPRSS2 expression. Furthermore, SARS-CoV-2 replication was also strongly inhibited by the synthetic furin inhibitor MI-1851 in human airway cells. In contrast, inhibition of endosomal cathepsins by E64d did not affect virus replication. Combining various TMPRSS2 inhibitors with furin inhibitor MI-1851 produced more potent antiviral activity against SARS-CoV-2 than an equimolar amount of any single serine protease inhibitor. Therefore, this approach has considerable therapeutic potential for treatment of COVID-19.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: