Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Dally and Notum regulate the switch between low and high level Hedgehog pathway signalling.

  • Katie L Ayers‎ et al.
  • Development (Cambridge, England)‎
  • 2012‎

During development, secreted morphogens, such as Hedgehog (Hh), control cell fate and proliferation. Precise sensing of morphogen levels and dynamic cellular responses are required for morphogen-directed morphogenesis, yet the molecular mechanisms responsible are poorly understood. Several recent studies have suggested the involvement of a multi-protein Hh reception complex, and have hinted at an understated complexity in Hh sensing at the cell surface. We show here that the expression of the proteoglycan Dally in Hh-receiving cells in Drosophila is necessary for high but not low level pathway activity, independent of its requirement in Hh-producing cells. We demonstrate that Dally is necessary to sequester Hh at the cell surface and to promote Hh internalisation with its receptor. This internalisation depends on both the activity of the hydrolase Notum and the glycosyl-phosphatidyl-inositol (GPI) moiety of Dally, and indicates a departure from the role of the second glypican Dally-like in Hh signalling. Our data suggest that hydrolysis of the Dally-GPI by Notum provides a switch from low to high level signalling by promoting internalisation of the Hh-Patched ligand-receptor complex.


Bacillus thuringiensis toxins divert progenitor cells toward enteroendocrine fate by decreasing cell adhesion with intestinal stem cells in Drosophila.

  • Rouba Jneid‎ et al.
  • eLife‎
  • 2023‎

Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests. However, Btk belongs to the B. cereus group, some strains of which are well known human opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-dependent adherens junction between the ISC and its immediate daughter progenitor, leading the latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal homeostasis and endocrine functions.


Phosphorylation of the atypical kinesin Costal2 by the kinase Fused induces the partial disassembly of the Smoothened-Fused-Costal2-Cubitus interruptus complex in Hedgehog signalling.

  • Laurent Ruel‎ et al.
  • Development (Cambridge, England)‎
  • 2007‎

The Hedgehog (Hh) family of secreted proteins is involved both in developmental and tumorigenic processes. Although many members of this important pathway are known, the mechanism of Hh signal transduction is still poorly understood. In this study, we analyse the regulation of the kinesin-like protein Costal2 (Cos2) by Hh. We show that a residue on Cos2, serine 572 (Ser572), is necessary for normal transduction of the Hh signal from the transmembrane protein Smoothened (Smo) to the transcriptional mediator Cubitus interruptus (Ci). This residue is located in the serine/threonine kinase Fused (Fu)-binding domain and is phosphorylated as a consequence of Fu activation. Although Ser572 does not overlap with known Smo- or Ci-binding domains, the expression of a Cos2 variant mimicking constitutive phosphorylation and the use of a specific antibody to phosphorylated Ser572 showed a reduction in the association of phosphorylated Cos2 with Smo and Ci, both in vitro and in vivo. Moreover, Cos2 proteins with an Ala or Asp substitution of Ser572 were impaired in their regulation of Ci activity. We propose that, after activation of Smo, the Fu kinase induces a conformational change in Cos2 that allows the disassembly of the Smo-Fu-Cos2-Ci complex and consequent activation of Hh target genes. This study provides new insight into the mechanistic regulation of the protein complex that mediates Hh signalling and a unique antibody tool for directly monitoring Hh receptor activity in all activated cells.


Bacillus thuringiensis Bioinsecticides Induce Developmental Defects in Non-Target Drosophila melanogaster Larvae.

  • Marie-Paule Nawrot-Esposito‎ et al.
  • Insects‎
  • 2020‎

Bioinsecticides made from the bacterium Bacillus thuringiensis (Bt) are the bestselling bioinsecticide worldwide. Among Bt bioinsecticides, those based on the strain Bt subsp. kurstaki (Btk) are widely used in farming to specifically control pest lepidopteran larvae. Although there is much evidence of the lack of acute lethality of Btk products for non-target animals, only scarce data are available on their potential non-lethal developmental adverse effects. Using a concentration that could be reached in the field upon sprayings, we show that Btk products impair growth and developmental time of the non-target dipteran Drosophila melanogaster. We demonstrate that these effects are mediated by the synergy between Btk bacteria and Btk insecticidal toxins. We further show that Btk bioinsecticides trigger intestinal cell death and alter protein digestion without modifying the food intake and feeding behavior of the larvae. Interestingly, these harmful effects can be mitigated by a protein-rich diet or by adding the probiotic bacterium Lactobacillus plantarum into the food. Finally, we unravel two new cellular mechanisms allowing the larval midgut to maintain its integrity upon Btk aggression: First the flattening of surviving enterocytes and second, the generation of new immature cells arising from the adult midgut precursor cells. Together, these mechanisms participate to quickly fill in the holes left by the dying enterocytes.


Differential side-effects of Bacillus thuringiensis bioinsecticide on non-target Drosophila flies.

  • Aurélie Babin‎ et al.
  • Scientific reports‎
  • 2020‎

Bioinsecticides based on Bacillus thuringiensis (Bt) spores and toxins are increasingly popular alternative solutions to control insect pests, with potential impact of their accumulation in the environment on non-target organisms. Here, we tested the effects of chronic exposure to commercial Bt formulations (Bt var. kurstaki and israelensis) on eight non-target Drosophila species present in Bt-treated areas, including D. melanogaster (four strains). Doses up to those recommended for field application (~ 106 Colony Forming Unit (CFU)/g fly medium) did not impact fly development, while no fly emerged at ≥ 1000-fold this dose. Doses between 10- to 100-fold the recommended one increased developmental time and decreased adult emergence rates in a dose-dependent manner, with species-and strain-specific effect amplitudes. Focusing on D. melanogaster, development alterations were due to instar-dependent larval mortality, and the longevity and offspring number of adult flies exposed to bioinsecticide throughout their development were moderately influenced. Our data also suggest a synergy between the formulation compounds (spores, cleaved toxins, additives) might induce the bioinsecticide effects on larval development. Although recommended doses had no impact on non-target Drosophila species, misuse or local environmental accumulation of Bt bioinsecticides could have side-effects on fly populations with potential implications for their associated communities.


Tow (Target of Wingless), a novel repressor of the Hedgehog pathway in Drosophila.

  • Katie L Ayers‎ et al.
  • Developmental biology‎
  • 2009‎

Hedgehog (Hh) signalling plays a crucial role in the development and patterning of many tissues in both vertebrates and invertebrates. Aberrations in this pathway lead to severe developmental defects and cancer. Hh signal transduction in receiving cells is a well studied phenomenon; however questions still remain concerning the mechanism of repression of the pathway activator Smoothened (Smo) in the absence of Hh. Here we describe a novel repressor of the Hh pathway, Target of Wingless (Tow). Tow represents the Drosophila homolog of a conserved uncharacterised protein family. We show that Tow acts in Hh receiving cells, where its overexpression represses all levels of Hh signalling, and that this repression occurs upstream or at the level of Smo and downstream of the Hh receptor Patched (Ptc). In addition, we find that like Ptc, overexpression of Tow causes an accumulation of lipophorin in the wing disc. We demonstrate that loss of tow enhances different ptc alleles in a similar manner to another pathway repressor, Suppressor of Fused (SuFu), possibly through mediating Ptc dependant lipophorin internalisation. Combined, these results demonstrate that Tow is an important novel regulator of the Hh pathway in the wing imaginal disc, and may shed light on the mechanism of Ptc repression of Smo.


The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria.

  • Olivia Benguettat‎ et al.
  • PLoS pathogens‎
  • 2018‎

The digestive tract is the first organ affected by the ingestion of foodborne bacteria. While commensal bacteria become resident, opportunistic or virulent bacteria are eliminated from the gut by the local innate immune system. Here we characterize a new mechanism of defense, independent of the immune system, in Drosophila melanogaster. We observed strong contractions of longitudinal visceral muscle fibers for the first 2 hours following bacterial ingestion. We showed that these visceral muscle contractions are induced by immune reactive oxygen species (ROS) that accumulate in the lumen and depend on the ROS-sensing TRPA1 receptor. We then demonstrate that both ROS and TRPA1 are required in a subset of anterior enteroendocrine cells for the release of the DH31 neuropeptide which activates its receptor in the neighboring visceral muscles. The resulting contractions of the visceral muscles favors quick expulsion of the bacteria, limiting their presence in the gut. Our results unveil a precocious mechanism of defense against ingested opportunistic bacteria, whether they are Gram-positive like Bacillus thuringiensis or Gram-negative like Erwinia carotovora carotovora. Finally, we found that the human homolog of DH31, CGRP, has a conserved function in Drosophila.


Transcriptomic analysis of Spodoptera frugiperda Sf9 cells resistant to Bacillus thuringiensis Cry1Ca toxin reveals that extracellular Ca2+, Mg2+ and production of cAMP are involved in toxicity.

  • Claude Castella‎ et al.
  • Biology open‎
  • 2019‎

Bacillus thuringiensis (Bt) produces pore forming toxins that have been used for pest control in agriculture for many years. However, their molecular and cellular mode of action is still unclear. While a first model - referred to as the pore forming model - is the most widely accepted scenario, a second model proposed that toxins could trigger an Mg2+-dependent intracellular signalling pathway leading to cell death. Although Cry1Ca has been shown to form ionic pores in the plasma membrane leading to cell swelling and death, we investigated the existence of other cellular or molecular events involved in Cry1Ca toxicity. The Sf9 insect cell line, derived from Spodoptera frugiperda, is highly and specifically sensitive to Cry1Ca. Through a selection program we developed various levels of laboratory-evolved Cry1Ca-resistant Sf9 cell lines. Using a specific S. frugiperda microarray we performed a comparative transcriptomic analysis between sensitive and resistant cells and revealed genes differentially expressed in resistant cells and related to cation-dependent signalling pathways. Ion chelators protected sensitive cells from Cry1Ca toxicity suggesting the necessity of both Ca2+ and/or Mg2+ for toxin action. Selected cells were highly resistant to Cry1Ca while toxin binding onto their plasma membrane was not affected. This suggested a resistance mechanism different from the classical 'loss of toxin binding'. We observed a correlation between Cry1Ca cytotoxicity and the increase of intracellular cAMP levels. Indeed, Sf9 sensitive cells produced high levels of cAMP upon toxin stimulation, while Sf9 resistant cells were unable to increase their intracellular cAMP. Together, these results provide new information about the mechanism of Cry1Ca toxicity and clues to potential resistance factors yet to discover.


Heart tube patterning in Drosophila requires integration of axial and segmental information provided by the Bithorax Complex genes and hedgehog signaling.

  • Romina Ponzielli‎ et al.
  • Development (Cambridge, England)‎
  • 2002‎

The Drosophila larval cardiac tube is composed of 104 cardiomyocytes that exhibit genetic and functional diversity. The tube is divided into the aorta and the heart proper that encompass the anterior and posterior parts of the tube, respectively. Differentiation into aorta and heart cardiomyocytes takes place during embryogenesis. We have observed living embryos to correlate morphological changes occurring during the late phases of cardiogenesis with the acquisition of organ function, including functional inlets, or ostiae. Cardiac cells diversity originates in response to two types of spatial information such that cells differentiate according to their position, both within a segment and along the anteroposterior axis. Axial patterning is controlled by homeotic genes of the Bithorax Complex (BXC) which are regionally expressed within the cardiac tube in non-overlapping domains. Ultrabithorax (Ubx) is expressed in the aorta whereas abdominal A (abd-A) is expressed in the heart, with the exception of the four most posterior cardiac cells which express Abdominal B (Abd-B). Ubx and abd-A functions are required to confer an aorta or a heart identity on cardiomyocytes, respectively. The anterior limit of the expression domain of Ubx, abd-A and Abd-B is independent of the function of the other genes. In contrast, abd-A represses Ubx expression in the heart and ectopic overexpression of abd-A transforms aorta cells into heart cardiomyocytes. Taken together, these results support the idea that BXC homeotic genes in the cardiac tube conform to the posterior prevalence rule. The cardiac tube is also segmentally patterned and each metamere contains six pairs of cardioblasts that are genetically diverse. We show that the transcription of seven up (svp), which is expressed in the two most posterior pairs of cardioblasts in each segment, is dependent on hedgehog (hh) signaling from the dorsal ectoderm. In combination with the axial information furnished by abd-A, the segmental hh-dependent information leads to the differentiation of the six pairs of svp-expressing cells into functional ostiae.


Cellular trafficking of the glypican Dally-like is required for full-strength Hedgehog signaling and wingless transcytosis.

  • Armel Gallet‎ et al.
  • Developmental cell‎
  • 2008‎

Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.


The long-range activity of Hedgehog is regulated in the apical extracellular space by the glypican Dally and the hydrolase Notum.

  • Katie L Ayers‎ et al.
  • Developmental cell‎
  • 2010‎

Cell fate determination during developmental patterning is often controlled by concentration gradients of morphogens. In the epithelial field, morphogens like the Hedgehog (Hh) peptides diffuse both apically and basolaterally; however, whether both pools of Hh are sensed at the cellular level is unclear. Here, we show that interfering with the amount of apical Hh causes a dramatic change in the long-range activation of low-threshold Hh target genes, without similar effect on short-range, high-threshold targets. We provide genetic evidence that the glypican Dally upregulates apical Hh levels, and that the release of Dally by the hydrolase Notum promotes apical Hh long-range activity. Our data suggest that several pools of Hh are perceived in epithelial tissues. Thus, we propose that the overall gradient of Hh is a composite of pools secreted by different routes (apical and basolateral), and that a cellular summation of these components is required for appropriate developmental patterning.


Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia.

  • Armel Gallet‎ et al.
  • Development (Cambridge, England)‎
  • 2006‎

The Hedgehog morphogen is a major developmental regulator that acts at short and long range to direct cell fate decisions in invertebrate and vertebrate tissues. Hedgehog is the only known metazoan protein to possess a covalently linked cholesterol moiety. Although the role of the cholesterol group of Hedgehog remains unclear, it has been suggested to be dispensable for the its long-range activity in Drosophila. Here, we provide data in three different epithelia - ventral and dorsal embryonic ectoderm, and larval imaginal disc tissue - showing that cholesterol modification is in fact necessary for the controlled long-range activity of Drosophila Hedgehog. We provide an explanation for the discrepancy between our results and previous reports by showing that unmodified Hh can act at long range, albeit in an uncontrolled manner, only when expressed in squamous cells. Our data show that cholesterol modification controls long-range Hh activity at multiple levels. First, cholesterol increases the affinity of Hh for the plasma membrane, and consequently enhances its apparent intrinsic activity, both in vitro and in vivo. In addition, multimerisation of active Hh requires the presence of cholesterol. These multimers are correlated with the assembly of Hh into apically located, large punctate structures present in active Hh gradients in vivo. By comparing the activity of cholesterol-modified Hh in columnar epithelial cells and peripodial squamous cells, we show that epithelial cells provide the machinery necessary for the controlled planar movement of Hh, thereby preventing the unrestricted spreading of the protein within the three-dimensional space of the epithelium. We conclude that, as in vertebrates, cholesterol modification is essential for controlled long-range Hh signalling in Drosophila.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: