Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer.

  • Ivana Hermanova‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.


Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against DNA damage.

  • Joffrey Pelletier‎ et al.
  • The EMBO journal‎
  • 2020‎

Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21-mediated G1 arrest, whereas the DDR requires that cells enter S phase. Gradual inhibition of inosine monophosphate dehydrogenase (IMPDH), an enzyme required for de novo GMP synthesis, reveals a hierarchical organization of these two checkpoints. We find that the IRBC is the primary nucleotide sensor, but increased IMPDH inhibition leads to p21 degradation, compromising IRBC-mediated G1 arrest and allowing S phase entry and DDR activation. Disruption of the IRBC alone is sufficient to elicit the DDR, which is strongly enhanced by IMPDH inhibition, suggesting that the IRBC acts as a barrier against genomic instability.


Induction of Id-1 by FGF-2 involves activity of EGR-1 and sensitizes neuroblastoma cells to cell death.

  • Giovanni Passiatore‎ et al.
  • Journal of cellular physiology‎
  • 2011‎

Inhibitor of differentiation-1 (Id-1) is a member of helix-loop-helix (HLH) family of proteins that regulate gene transcription through their inhibitory binding to basic-HLH transcription factors. Similarly to other members of this family, Id-1 is involved in the repression of cell differentiation and activation of cell growth. The dual function of Id-1, inhibition of differentiation, and stimulation of cell proliferation, might be interdependent, as cell differentiation is generally coupled with the exit from the cell cycle. Fibroblast growth factor-2 (FGF-2) has been reported to play multiple roles in different biological processes during development of the central nervous system (CNS). In addition, FGF-2 has been described to induce "neuronal-like" differentiation and trigger apoptosis in neuroblastoma SK-N-MC cells. Although regulation of Id-1 protein by several mitogenic factors is well-established, little is known about the role of FGF-2 in the regulation of Id-1. Using human neuroblastoma cell line, SK-N-MC, we found that treatment of these cells with FGF-2 resulted in early induction of both Id-1 mRNA and protein. The induction occurs within 1 h from FGF-2 treatment and is mediated by ERK1/2 pathway, which in turn stimulates expression of the early growth response-1 (Egr-1) transcription factor. We also demonstrate direct interaction of Egr-1 with Id-1 promoter in vitro and in cell culture. Finally, inhibition of Id-1 expression results in G(2) /M accumulation of FGF-2-treated cells and delayed cell death.


mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer.

  • Amaia Zabala-Letona‎ et al.
  • Nature‎
  • 2017‎

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Stratification and therapeutic potential of PML in metastatic breast cancer.

  • Natalia Martín-Martín‎ et al.
  • Nature communications‎
  • 2016‎

Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.


Inhibition of CBP synergizes with the RNA-dependent mechanisms of Azacitidine by limiting protein synthesis.

  • Jeannine Diesch‎ et al.
  • Nature communications‎
  • 2021‎

The nucleotide analogue azacitidine (AZA) is currently the best treatment option for patients with high-risk myelodysplastic syndromes (MDS). However, only half of treated patients respond and of these almost all eventually relapse. New treatment options are urgently needed to improve the clinical management of these patients. Here, we perform a loss-of-function shRNA screen and identify the histone acetyl transferase and transcriptional co-activator, CREB binding protein (CBP), as a major regulator of AZA sensitivity. Compounds inhibiting the activity of CBP and the closely related p300 synergistically reduce viability of MDS-derived AML cell lines when combined with AZA. Importantly, this effect is specific for the RNA-dependent functions of AZA and not observed with the related compound decitabine that is only incorporated into DNA. The identification of immediate target genes leads us to the unexpected finding that the effect of CBP/p300 inhibition is mediated by globally down regulating protein synthesis.


The metabolic co-regulator PGC1α suppresses prostate cancer metastasis.

  • Veronica Torrano‎ et al.
  • Nature cell biology‎
  • 2016‎

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.


V-ATPase: a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy.

  • Nathalie Meo-Evoli‎ et al.
  • Oncotarget‎
  • 2015‎

In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy. Gain- and loss-of-function experiments reveal that E2F1 regulates v-ATPase activity and inhibition of v-ATPase activity repressed E2F1-induced lysosomal trafficking and mTORC1 activation. Immunoprecipitation experiments demonstrate that E2F1 induces the recruitment of v-ATPase to lysosomal RagB GTPase, suggesting that E2F1 regulates v-ATPase activity by enhancing the association of V0 and V1 v-ATPase complex. Analysis of v-ATPase subunit expression identified B subunit of V0 complex, ATP6V0B, as a transcriptional target of E2F1. Importantly, ATP6V0B ectopic-expression increased v-ATPase and mTORC1 activity, consistent with ATP6V0B being responsible for mediating the effects of E2F1 on both responses. Our findings on lysosomal trafficking, mTORC1 activation and autophagy suppression suggest that pharmacological intervention at the level of v-ATPase may be an efficacious avenue for the treatment of metastatic processes in tumors overexpressing E2F1.


Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN.

  • Aitziber Ugalde-Olano‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2015‎

Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.


Autogenous Control of 5′TOP mRNA Stability by 40S Ribosomes.

  • Antonio Gentilella‎ et al.
  • Molecular cell‎
  • 2017‎

Ribosomal protein (RP) expression in higher eukaryotes is regulated translationally through the 5′TOP sequence. This mechanism evolved to more rapidly produce RPs on demand in different tissues. Here we show that 40S ribosomes, in a complex with the mRNA binding protein LARP1, selectively stabilize 5′TOP mRNAs, with disruption of this complex leading to induction of the impaired ribosome biogenesis checkpoint (IRBC) and p53 stabilization. The importance of this mechanism is underscored in 5q− syndrome, a macrocytic anemia caused by a large monoallelic deletion, which we found to also encompass the LARP1 gene. Critically, depletion of LARP1 alone in human adult CD34+ bone marrow precursor cells leads to a reduction in 5′TOP mRNAs and the induction of p53. These studies identify a 40S ribosome function independent of those in translation that, with LARP1, mediates the autogenous control of 5′TOP mRNA stability, whose disruption is implicated in the pathophysiology of 5q− syndrome.


Autoregulation of co-chaperone BAG3 gene transcription.

  • Antonio Gentilella‎ et al.
  • Journal of cellular biochemistry‎
  • 2009‎

The Bcl-2-associated athanogene, BAG, protein family through their BAG domain associates with the heat shock protein 70 (HSP-70) and modulates its chaperone activity. One member of this family, BAG3, appears to play an important role in protein homeostasis, as its expression promotes cell survival. Expression of BAG3 is enhanced by a variety of stress-inducing agents. Here we describe a role for BAG3 to modulate transcription of its own promoter through a positive feedback loop involving its 5'-UTR sequence. Activation of the BAG3 promoter is mediated by the BAG domain and is independent of BAG3 association with the UTR sequence. Autoactivation of the BAG3 gene is observed in several cultures of human glial cells including gliomas, but not in several other non-glial cell lines such as He La and others. Results from cell fractionation and immunocytochemistry showed BAG3 in the cytoplasm as well as the nuclei of glial cells. These observations suggest that BAG3 gene expression is controlled by its own product and that this may be critical for the biological activity of BAG3 in some cell types.


The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant.

  • Julen Tomás-Cortázar‎ et al.
  • Scientific reports‎
  • 2017‎

Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in the inhibition of early signaling events and the production of the autocrine growth factor, interleukin-2. The fate of the CD4 T cells activated in the presence of Salp15 or its long-term effects are, however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished cross-antigenic antibody production even after interruption of the treatment with the protein. Transcriptionally, the salivary protein provokes an acute effect that includes known activation markers, such as Il2 or Cd44, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with Salp15 does not result in B cell anergy or the generation of myeloid suppressor cells. However, Salp15 induces the increased expression of the ectoenzyme, CD73, in regulatory T cells and increased production of adenosine. Our study provides a profound characterization of the immunomodulatory activity of Salp15 and suggests that its long-term effects are due to the specific regulation of CD73.


The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition.

  • Cristina Oliveira-Mateos‎ et al.
  • Nature communications‎
  • 2019‎

One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers.


Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer.

  • Felix Royo‎ et al.
  • Oncotarget‎
  • 2016‎

Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa.


Low-dose statin treatment increases prostate cancer aggressiveness.

  • Alfredo Caro-Maldonado‎ et al.
  • Oncotarget‎
  • 2018‎

Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer.


The 40S-LARP1 complex reprograms the cellular translatome upon mTOR inhibition to preserve the protein synthetic capacity.

  • Pedro Fuentes‎ et al.
  • Science advances‎
  • 2021‎

Ribosomes execute the transcriptional program in every cell. Critical to sustain nearly all cellular activities, ribosome biogenesis requires the translation of ~200 factors of which 80 are ribosomal proteins (RPs). As ribosome synthesis depends on RP mRNA translation, a priority within the translatome architecture should exist to ensure the preservation of ribosome biogenesis capacity, particularly under adverse growth conditions. Here, we show that under critical metabolic constraints characterized by mTOR inhibition, LARP1 complexed with the 40S subunit protects from ribophagy the mRNAs regulon for ribosome biogenesis and protein synthesis, acutely preparing the translatome to promptly resume ribosomes production after growth conditions return permissive. Characterizing the LARP1-protected translatome revealed a set of 5′TOP transcript isoforms other than RPs involved in energy production and in mitochondrial function, among other processes, indicating that the mTOR-LARP1-5′TOP axis acts at the translational level as a primary guardian of the cellular anabolic capacity.


Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVID-19 pneumonia.

  • Lara Gibellini‎ et al.
  • EMBO molecular medicine‎
  • 2020‎

In patients infected by SARS-CoV-2 who experience an exaggerated inflammation leading to pneumonia, monocytes likely play a major role but have received poor attention. Thus, we analyzed peripheral blood monocytes from patients with COVID-19 pneumonia and found that these cells show signs of altered bioenergetics and mitochondrial dysfunction, had a reduced basal and maximal respiration, reduced spare respiratory capacity, and decreased proton leak. Basal extracellular acidification rate was also diminished, suggesting reduced capability to perform aerobic glycolysis. Although COVID-19 monocytes had a reduced ability to perform oxidative burst, they were still capable of producing TNF and IFN-γ in vitro. A significantly high amount of monocytes had depolarized mitochondria and abnormal mitochondrial ultrastructure. A redistribution of monocyte subsets, with a significant expansion of intermediate/pro-inflammatory cells, and high amounts of immature monocytes were found, along with a concomitant compression of classical monocytes, and an increased expression of inhibitory checkpoints like PD-1/PD-L1. High plasma levels of several inflammatory cytokines and chemokines, including GM-CSF, IL-18, CCL2, CXCL10, and osteopontin, finally confirm the importance of monocytes in COVID-19 immunopathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: