2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Molecular Virologic and Clinical Characteristics of a Chikungunya Fever Outbreak in La Romana, Dominican Republic, 2014.

  • Rose M Langsjoen‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

Since emerging in Saint Martin in 2013, chikungunya virus (CHIKV), an alphavirus transmitted by the Aedes aegypti mosquito, has infected approximately two million individuals in the Americas, with over 500,000 reported cases in the Dominican Republic (DR). CHIKV-infected patients typically present with a febrile syndrome including polyarthritis/polyarthralgia, and a macropapular rash, similar to those infected with dengue and Zika viruses, and malaria. Nevertheless, many Dominican cases are unconfirmed due to the unavailability and high cost of laboratory testing and the absence of specific treatment for CHIKV infection. To obtain a more accurate representation of chikungunya fever (CHIKF) clinical signs and symptoms, and confirm the viral lineage responsible for the DR CHIKV outbreak, we tested 194 serum samples for CHIKV RNA and IgM antibodies from patients seen in a hospital in La Romana, DR using quantitative RT-PCR and IgM capture ELISA, and performed retrospective chart reviews. RNA and antibodies were detected in 49% and 24.7% of participants, respectively. Sequencing revealed that the CHIKV strain responsible for the La Romana outbreak belonged to the Asian/American lineage and grouped phylogenetically with recent Mexican and Trinidadian isolates. Our study shows that, while CHIKV-infected individuals were infrequently diagnosed with CHIKF, uninfected patients were never falsely diagnosed with CHIKF. Participants testing positive for CHIKV RNA were more likely to present with arthralgia, although it was reported in just 20.0% of CHIKF+ individuals. High percentages of respiratory (19.6%) signs and symptoms, especially among children, were noted, though it was not possible to determine whether individuals infected with CHIKV were co-infected with other pathogens. These results suggest that CHIKV may have been underdiagnosed during this outbreak, and that CHIKF should be included in differential diagnoses of diverse undifferentiated febrile syndromes in the Americas.


A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity.

  • Jing Zou‎ et al.
  • EBioMedicine‎
  • 2018‎

Vaccines are the most effective means to fight and eradicate infectious diseases. Live-attenuated vaccines (LAV) usually have the advantages of single dose, rapid onset of immunity, and durable protection. DNA vaccines have the advantages of chemical stability, ease of production, and no cold chain requirement. The ability to combine the strengths of LAV and DNA vaccines may transform future vaccine development by eliminating cold chain and cell culture with the potential for adventitious agents.


A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

  • Chao Shan‎ et al.
  • Nature communications‎
  • 2017‎

Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.


Maternal vaccination and protective immunity against Zika virus vertical transmission.

  • Chao Shan‎ et al.
  • Nature communications‎
  • 2019‎

An important goal of the Zika virus (ZIKV) vaccine is to prevent a congenital syndrome in fetuses of pregnant women, but studies directly evaluating maternal vaccination for ZIKV are lacking. Here we report maternal vaccination using a live-attenuated ZIKV vaccine (3'UTR-∆10-LAV) in a pregnant mouse model. Maternal immunization with 3'UTR-∆10-LAV does not cause any adverse effects on pregnancy, fetal development, or offspring behavior. One maternal immunization fully protects dams against ZIKV infection and in utero transmission. Although neutralizing antibody alone is sufficient to prevent in utero transmission, a higher neutralizing titer is required to protect pregnant mice against in utero transmission than that required to protect non-pregnant mice against viral infection. The immunized dams transfer maternal antibodies to pups, which protect neonates against ZIKV infection. Notably, pregnancy weakens maternal T cell response to 3'UTR-∆10-LAV vaccination. Our results suggest that, besides vaccinating non-pregnant individuals, 3'UTR-∆10-LAV may also be considered for maternal vaccination.


Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth.

  • Zhiqiang Ku‎ et al.
  • Nature communications‎
  • 2022‎

One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce emergence of antibody resistance. Here we engineer two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) shows increased antigen-binding and virus-neutralizing activities against multiple SARS-CoV-2 variants as well as increased breadth of neutralizing activity compared to the cocktail. X-ray crystallography and cryo-EM reveal distinct binding models for individual cocktail antibodies, and computational simulations suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and multiple variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.


An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors.

  • Chao Shan‎ et al.
  • Cell host & microbe‎
  • 2016‎

The Asian lineage of Zika virus (ZIKV) has recently caused epidemics and severe disease. Unraveling the mechanisms causing increased viral transmissibility and disease severity requires experimental systems. We report an infectious cDNA clone of ZIKV that was generated using a clinical isolate of the Asian lineage. The cDNA clone-derived RNA is infectious in cells, generating recombinant ZIKV. The recombinant virus is virulent in established ZIKV mouse models, leading to neurological signs relevant to human disease. Additionally, recombinant ZIKV is infectious for Aedes aegypti and thus provides a means to examine virus transmission. The infectious cDNA clone was further used to generate a luciferase ZIKV that exhibited sensitivity to a panflavivirus inhibitor, highlighting its potential utility for antiviral screening. This ZIKV reverse genetic system, together with mouse and mosquito infection models, may help identify viral determinants of human virulence and mosquito transmission as well as inform vaccine and therapeutic strategies.


A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19.

  • Xuping Xie‎ et al.
  • Nature communications‎
  • 2020‎

A high-throughput platform would greatly facilitate coronavirus disease 2019 (COVID-19) serological testing and antiviral screening. Here we present a high-throughput nanoluciferase severe respiratory syndrome coronavirus 2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. SARS-CoV-2-Nluc can be used to measure neutralizing antibody activity in patient sera within 5 hours, and it produces results in concordance with a plaque reduction neutralization test (PRNT). Additionally, using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2), we show that the assay can be used for antiviral screening. Using the optimized SARS-CoV-2-Nluc assay, we evaluate a panel of antivirals and other anti-infective drugs, and we identify nelfinavir, rupintrivir, and cobicistat as the most selective inhibitors of SARS-CoV-2-Nluc (EC50 0.77 to 2.74 µM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 µM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.


Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis.

  • Xuping Xie‎ et al.
  • mBio‎
  • 2017‎

Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425-428, 2016, https://doi.org/10.1038/nature17994). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development.


ZIKV can infect human term placentas in the absence of maternal factors.

  • Diana L Villazana-Kretzer‎ et al.
  • Communications biology‎
  • 2022‎

Zika virus infection can result in devastating pregnancy outcomes when it crosses the placental barrier. For human pregnancies, the mechanisms of vertical transmission remain enigmatic. Utilizing a human placenta-cotyledon perfusion model, we examined Zika virus exposure in the absence of maternal factors. To distinguish responses related to viral infection vs. recognition, we evaluated cotyledons perfused with either active or inactivated Zika virus. Active Zika virus exposure resulted in infection, cell death and syncytium injury. Pathology corresponded with transcriptional changes related to inflammation and innate immunity. Inactive Zika virus exposure also led to syncytium injury and related changes in gene expression but not cell death. Our observations reveal pathologies and innate immune responses that are dependent on infection or virus placenta interactions independent of productive infection. Importantly, our findings indicate that Zika virus can infect and compromise placentas in the absence of maternal humoral factors that may be protective.


A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions.

  • Yang Liu‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2022‎

We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcriptional regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (Δ3678). The Δ3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The Δ3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the Δ3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the Δ3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter Δ3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that Δ3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.


A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission.

  • Awadalkareem Adam‎ et al.
  • NPJ vaccines‎
  • 2021‎

Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.


Engineering SARS-CoV-2 using a reverse genetic system.

  • Xuping Xie‎ et al.
  • Nature protocols‎
  • 2021‎

Reverse genetic systems are a critical tool for studying viruses and identifying countermeasures. In response to the ongoing COVID-19 pandemic, we recently developed an infectious complementary DNA (cDNA) clone for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse genetic system can be used to rapidly engineer viruses with desired mutations to study the virus in vitro and in vivo. Viruses can also be designed for live-attenuated vaccine development and engineered with reporter genes to facilitate serodiagnosis, vaccine evaluation and antiviral screening. Thus, the reverse genetic system of SARS-CoV-2 will be widely used for both basic and translational research. However, due to the large size of the coronavirus genome (~30,000 nucleotides long) and several toxic genomic elements, manipulation of the reverse genetic system of SARS-COV-2 is not a trivial task and requires sophisticated methods. Here, we describe the technical details of how to engineer recombinant SARS-CoV-2. Overall, the process includes six steps: (i) prepare seven plasmids containing SARS-CoV-2 cDNA fragment(s), (ii) prepare high-quality DNA fragments through restriction enzyme digestion of the seven plasmids, (iii) assemble the seven cDNA fragments into a genome-length cDNA, (iv) in vitro transcribe RNA from the genome-length cDNA, (iv) electroporate the genome-length RNA into cells to recover recombinant viruses and (vi) characterize the rescued viruses. This protocol will enable researchers from different research backgrounds to master the use of the reverse genetic system and, consequently, accelerate COVID-19 research.


A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission.

  • Xuping Xie‎ et al.
  • Cell host & microbe‎
  • 2018‎

Zika virus (ZIKV) infection of the mother during pregnancy causes devastating Zika congenital syndrome in the offspring. A ZIKV vaccine with optimal safety and immunogenicity for use in pregnant women is critically needed. Toward this goal, we have developed a single-dose live-attenuated vaccine candidate that infects cells with controlled, limited infection rounds. The vaccine contains a 9-amino-acid deletion in the viral capsid protein and replicates to titers of > 106 focus-forming units (FFU)/mL in cells expressing the full-length capsid protein. Immunization of A129 mice with one dose (105 FFU) did not produce viremia, but elicited protective immunity that completely prevented viremia, morbidity, and mortality after challenge with an epidemic ZIKV strain (106 PFU). A single-dose vaccination also fully prevented infection of pregnant mice and maternal-to-fetal transmission. Intracranial injection of the vaccine (104 FFU) to 1-day-old mice did not cause any disease or death, underscoring the safety of this vaccine candidate.


An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction.

  • Hongjie Xia‎ et al.
  • Nature communications‎
  • 2018‎

Virus-host interactions determine an infection outcome. The Asian lineage of Zika virus (ZIKV), responsible for the recent epidemics, has fixed a mutation in the NS1 gene after 2012 that enhances mosquito infection. Here we report that the same mutation confers NS1 to inhibit interferon-β induction. This mutation enables NS1 binding to TBK1 and reduces TBK1 phosphorylation. Engineering the mutation into a pre-epidemic ZIKV strain debilitates the virus for interferon-β induction; reversing the mutation in an epidemic ZIKV strain invigorates the virus for interferon-β induction; these mutational effects are lost in IRF3-knockout cells. Additionally, ZIKV NS2A, NS2B, NS4A, NS4B, and NS5 can also suppress interferon-β production through targeting distinct components of the RIG-I pathway; however, for these proteins, no antagonistic difference is observed among various ZIKV strains. Our results support the mechanism that ZIKV has accumulated mutation(s) that increases the ability to evade immune response and potentiates infection and epidemics.


A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation.

  • Antonio E Muruato‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

Virus neutralization remains the gold standard for determining antibody efficacy. Therefore, a high-throughput assay to measure SARS-CoV-2 neutralizing antibodies is urgently needed for COVID-19 serodiagnosis, convalescent plasma therapy, and vaccine development. Here we report on a fluorescence-based SARS-CoV-2 neutralization assay that detects SARS-CoV-2 neutralizing antibodies in COVID-19 patient specimens and yields comparable results to plaque reduction neutralizing assay, the gold standard of serological testing. Our approach offers a rapid platform that can be scaled to screen people for antibody protection from COVID-19, a key parameter necessary to safely reopen local communities.


A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation.

  • Antonio E Muruato‎ et al.
  • Nature communications‎
  • 2020‎

Virus neutralization remains the gold standard for determining antibody efficacy. Therefore, a high-throughput assay to measure SARS-CoV-2 neutralizing antibodies is urgently needed for COVID-19 serodiagnosis, convalescent plasma therapy, and vaccine development. Here, we report on a fluorescence-based SARS-CoV-2 neutralization assay that detects SARS-CoV-2 neutralizing antibodies in COVID-19 patient specimens and yields comparable results to plaque reduction neutralizing assay, the gold standard of serological testing. The fluorescence-based neutralization assay is specific to measure COVID-19 neutralizing antibodies without cross reacting with patient specimens with other viral, bacterial, or parasitic infections. Collectively, our approach offers a rapid platform that can be scaled to screen people for antibody protection from COVID-19, a key parameter necessary to safely reopen local communities.


Zika structural genes determine the virulence of African and Asian lineages.

  • Bruno T D Nunes‎ et al.
  • Emerging microbes & infections‎
  • 2020‎

The Asian lineage of Zika virus (ZIKV) is responsible for the recent epidemics in the Americas and severe disease, whereas the African lineage of ZIKV has not been reported to cause epidemics or severe disease. We constructed a cDNA infectious clone (IC) of an African ZIKV strain, which, together with our previously developed Asian ZIKV strain IC, allowed us to engineer chimeric viruses by swapping the structural and non-structural genes between the two lineages. Recombinant parental and chimeric viruses were analyzed in A129 and newborn CD1 mouse models. In the A129 mice, the African strain developed higher viremia, organ viral loading, and mortality rate. In CD1 mice, the African strain exhibited a higher neurovirulence than the Asian strain. A chimeric virus containing the structural genes from the African strain is more virulent than the Asian strain, whereas a chimeric virus containing the non-structural genes from the African strain exhibited a virulence comparable to the Asian strain. These results suggest that (i) African strain is more virulent than Asian strain and (ii) viral structural genes primarily determine the virulence difference between the two lineages in mouse models. Other factors may contribute to the discrepancy between the mouse and epidemic results.


A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions.

  • Yang Liu‎ et al.
  • Nature communications‎
  • 2022‎

We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcription regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (∆3678). The ∆3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The ∆3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the ∆3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the ∆3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter ∆3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that ∆3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.


A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine.

  • Yujiao Yang‎ et al.
  • EBioMedicine‎
  • 2017‎

A purified inactivated vaccine (PIV) using the Zika virus (ZIKV) Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E) was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production) for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly). The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F). The mutant cDNA clone produced >25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination.


Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

  • Camila R Fontes-Garfias‎ et al.
  • Cell reports‎
  • 2017‎

Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: