Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Interaction between sphingosine kinase/sphingosine 1 phosphate and transforming growth factor-β/Smads pathways in experimental intestinal fibrosis. An in vivo immunohistochemical study.

  • Roberta Sferra‎ et al.
  • European journal of histochemistry : EJH‎
  • 2018‎

A concomitant action of multiple profibrotic mediators appears crucial in the development and progression of fibrosis. Sphingosine kinase/sphingosine 1 phosphate and transforming growth factor-β/Smads pathways are both involved in pathogenesis of fibrosis in several organs by controlling differentiation of fibroblasts to myofibroblasts and the epithelial to-mesenchymal transition. However, their direct involvement in chronic colitis-associated fibrosis it is not yet known. In this study we evaluated the immunohistochemical expression of some proteins implicated in sphingosine kinase/sphingosine 1 phosphate and transforming growth factor-β/Smads pathways in Dextrane Sodium Sulphate (DSS)-induced colorectal fibrosis in mice. Compared to control mice, DSS-induced chronic colitis mice developed a marked intestinal fibrosis associated with a concomitant overexpression of TGF-β, p-Smad3, α-SMA, collagen I-III, SPHK1, RhoA, PI3K, Akt, p-Akt, p-mTOR. This study highlights the relationship between the two pathways and the possible role of SPHK1 in the intestinal fibrosis.  These results, if confirmed by in vitro studies, may have important clinical implications in the development of new therapeutical approaches in inflammatory bowel disease.


The possible prognostic role of histone deacetylase and transforming growth factor β/Smad signaling in high grade gliomas treated by radio-chemotherapy: a preliminary immunohistochemical study.

  • Roberta Sferra‎ et al.
  • European journal of histochemistry : EJH‎
  • 2017‎

Glioblastoma (GBM) is the most common and aggressive tumor of the central nervous system. Unfortunately, patients affected by this disease have a very poor prognosis, due to high level of invasiveness and resistance to standard therapies. Although the molecular profile of GBM has been extensively investigated, the events responsible for its pathogenesis and progression remain largely unknown. Histone Deacetylases (HDAC) dependent epigenetic modifications and transforming growth factor (TGF)-β/Smad pathway seem to play an important role in GBM tumorigenesis, resistance to common therapies and poor clinical outcome.  The aim of this study was to evaluate the involvement and the possible interaction between these two molecular cascades in the pathogenesis and prognosis of GBM. Immunohistochemistry (IHC) was performed on microdissected GBM samples, collected from 14 patients (6 men and 8 women) ranging in age from 43 to 74 years. The patients were previously divided, on the basis of their overall survival (OS), into two groups: short and long OS. Patients with poor prognosis showed hyperexpression of HDAC4 and HDAC6, an activation of the TGF-β/Smad pathway, with high levels of IL-13, Smad2, PDGF and MMP3 expression, compared to the long survivors. The short OS group exhibits a decrease in Smad 7 expression and also low levels of p21 immunostaining, which represents a common target of the two pathways. The IHC data was confirmed by quantitative analysis and Immunoblotting. Our preliminary results suggest that both HDAC4 and HDAC6 together with the TGF-β/Smad pathway may be involved in progression of GBM and this cross talking could be a useful prognostic marker in this deadly disease.


Development of hepatocellular cancer induced by long term low fat-high carbohydrate diet in a NAFLD/NASH mouse model.

  • Alessandra Tessitore‎ et al.
  • Oncotarget‎
  • 2017‎

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease. It can progress to nonalcoholic steatohepatitis (NASH) and, in a percentage of cases, to hepatocarcinogenesis. The strong incidence in western countries of obesity and metabolic syndrome, whose NAFLD is the hepatic expression, is thought to be correlated to consumption of diets characterized by processed food and sweet beverages. Previous studies described high-fat diet-induced liver tumors. Conversely, the involvement of low-fat/high-carbohydrate diet in the progression of liver disease or cancer initiation has not been described yet. Here we show for the first time hepatic cancer formation in low-fat/high-carbohydrate diet fed NAFLD/NASH mouse model. Animals were long term high-fat, low-fat/high-carbohydrate or standard diet fed. We observed progressive liver damage in low-fat/high-carbohydrate and high-fat animals after 12 and, more, 18 months. Tumors were detected in 20% and 50% of high-fat diet fed mice after 12 and 18 months and, interestingly, in 30% of low-fat/high-carbohydrate fed animals after 18 months. No tumors were detected in standard diet fed mice. Global increase of hepatic interleukin-1β, interleukin-6, tumor necrosis factor-α and hepatocyte growth factor was detected in low-fat/high-carbohydrate and high-fat with respect to standard diet fed mice as well as in tumor with respect to non-tumor bearing mice. A panel of 15 microRNAs was analyzed: some of them revealed differential expression in low-fat/high-carbohydrate with respect to high-fat diet fed groups and in tumors. Data here shown provide the first evidence of the involvement of low-fat/high-carbohydrate diet in hepatic damage leading to tumorigenesis.


The first-in-class alkylating deacetylase inhibitor molecule tinostamustine shows antitumor effects and is synergistic with radiotherapy in preclinical models of glioblastoma.

  • Claudio Festuccia‎ et al.
  • Journal of hematology & oncology‎
  • 2018‎

The use of alkylating agents such as temozolomide in association with radiotherapy (RT) is the therapeutic standard of glioblastoma (GBM). This regimen modestly prolongs overall survival, also if, in light of the still dismal prognosis, further improvements are desperately needed, especially in the patients with O6-methylguanine-DNA-methyltransferase (MGMT) unmethylated tumors, in which the benefit of standard treatment is less. Tinostamustine (EDO-S101) is a first-in-class alkylating deacetylase inhibitor (AK-DACi) molecule that fuses the DNA damaging effect of bendamustine with the fully functional pan-histone deacetylase (HDAC) inhibitor, vorinostat, in a completely new chemical entity.


The Natural Carotenoid Crocetin and the Synthetic Tellurium Compound AS101 Protect the Ovary against Cyclophosphamide by Modulating SIRT1 and Mitochondrial Markers.

  • Giovanna Di Emidio‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

Cancer therapies are associated with increased infertility risk due to accelerated reproductive aging. Oxidative stress (OS) is a potential mechanism behind ovarian toxicity by cyclophosphamide (CPM), the most ovotoxic anticancer drug. An important sensor of OS is SIRT1, a NAD+-dependent deacetylase which regulates cellular defence and cell fate. This study investigated whether the natural carotenoid crocetin and the synthetic compound AS101 protect the ovary against CPM by modulating SIRT1 and mitochondrial markers. We found that the number of primordial follicles of female CD1 mice receiving crocetin plus CPM increased when compared with CPM alone and similar to AS101, whose protective effects are known. SIRT1 increased in CPM mouse ovaries revealing the occurrence of OS. Similarly, mitochondrial SIRT3 rose, whilst SOD2 and the mitochondrial biogenesis activator PGC1-α decreased, suggesting the occurrence of mitochondrial damage. Crocetin and AS101 administration prevented SIRT1 burst suggesting that preservation of redox balance can help the ovary to counteract ovarian damage by CPM. Decreased SIRT3 and increased SOD2 and PGC1-α in mice receiving crocetin or AS101 prior to CPM provide evidence for mitochondrial protection. Present results improve the knowledge of ovarian damage by CPM and may help to develop interventions for preserving fertility in cancer patients.


Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis.

  • Jacopo Di Gregorio‎ et al.
  • PloS one‎
  • 2017‎

Intestinal fibrosis is characterized by abnormal production and deposition of extracellular matrix (ECM) proteins by activated myofibroblasts. The main progenitor cells of activated myofibroblasts are the fibroblasts and the epithelial cells, the latter through the epithelial-mesenchymal transition (EMT).


Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?

  • Antonella Vetuschi‎ et al.
  • European journal of histochemistry : EJH‎
  • 2020‎

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a persistent sinonasal mucosa inflammatory disease with still unclear pathophysiologic mechanisms that imply events of tissue repair and structural remodelling. Several cascades seem to have a considerable role in the onset and progression of mucosa hyperproliferation in nasal polyps including transforming growth factor β/Small mother against decapentaplegic (TGFβ/Smads), mitogenactivated protein kinases (MAPKs), advanced glycosylation end-products (AGEs) together with epithelial-tomesenchymal transition (EMT). Since many inflammatory mediators are reported to play important roles in the development of nasal polyps (NP) disease, this study aimed to analyse the correlation between the AGEs/receptor of advanced glycosylation end-products (RAGE)/extracellular signal-regulated kinase (ERK) signalling pathway and the main markers of EMT to better understand the influence that they exert on the remodelling of nasal mucous membranes in patients affected by CRSwNP vs normal controls. A total of 30 patients were enrolled in this study. Immunohistochemical analysis, using AGE, RAGE, p-ERK, MMP-3, TGF-β1, Smad2/3, Collagen I-III, α-SMA, E-cadherin, IL-6 and Vimentin antibodies, was performed. AGE, RAGE, ERK, p-ERK and MMP3 were also evaluated using western blot analysis. We observed an overexpression of the AGE/RAGE/p-ERK and the main mesenchymal markers of EMT (Vimentin and IL-6) in CRSwNP vs controls whereas the TGF-β/Smad3 pathway did not show any significant differences between the two groups of patients. These observations suggest a complex network of processes in the pathogenesis of NP, and the AGE/RAGE/ERK pathway and EMT might work together in promoting tissue remodelling in the formation of CRSwNP.


PPAR-Gamma Orchestrates EMT, AGE, and Cellular Senescence Pathways in Colonic Epithelium and Restrains the Progression of IBDs.

  • Simona Pompili‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Intestinal fibrosis, the most common complication of inflammatory bowel disease (IBD), is characterized by an uncontrolled deposition of extracellular matrix proteins leading to complications resolvable only with surgery. Transforming growth factor is the key player in the epithelial-mesenchymal transition (EMT) and fibrogenesis process, and some molecules modulating its activity, including peroxisome proliferator-activated receptor (PPAR)-γ and its agonists, exert a promising antifibrotic action. The purpose of this study is to evaluate the contribution of signaling other than EMT, such as the AGE/RAGE (advanced glycation end products/receptor of AGEs) and the senescence pathways, in the etiopathogenesis of IBD. We used human biopsies from control and IBD patients, and we used a mouse model of colitis induced by dextran-sodium-sulfate (DSS), without/with treatments with GED (PPAR-gamma-agonist), or 5-aminosalicylic acid (5-ASA), a reference drug for IBD treatment. In patients, we found an increase in EMT markers, AGE/RAGE, and senescence signaling activation compared to controls. Consistently, we found the overexpression of the same pathways in DSS-treated mice. Surprisingly, the GED reduced all the pro-fibrotic pathways, in some circumstances more efficiently than 5-ASA. Results suggest that IBD patients could benefit from a combined pharmacological treatment targeting simultaneously different pathways involved in pro-fibrotic signals. In this scenario, PPAR-gamma activation could be a suitable strategy to alleviate the signs and symptoms of IBD and also its progression.


Episode-like pulse testosterone supplementation induces tumor senescence and growth arrest down-modulating androgen receptor through modulation of p-ERK1/2, pARser81 and CDK1 signaling: biological implications for men treated with testosterone replacement therapy.

  • Giovanni Luca Gravina‎ et al.
  • Oncotarget‎
  • 2017‎

Despite the growing body of knowledge showing that testosterone (T) may not significantly affect tumor progression in hypogonadal patients treated for prostate cancer (Pca), the use of this hormone in this population still remains controversial. The effects of continuous or pulsed T stimulation were tested in vitro and in vivo on androgen-sensitive Pca cell lines in order to assess the differential biological properties of these two treatment modalities. Pulsed T treatment resulted in a greater inhibition than continuous T supplementation of tumor growth in vitro and in vivo. The effects of pulsed T treatment on tumor growth inhibition, G0/G1 cell cycle arrest, and tumor senescence was more pronounced than those obtained upon continuous T treatments. Mechanistic studies revealed that G0/G1 arrest and tumor senescence upon pulsed T treatment were associated with a marked decrease in cyclin D1, c-Myc and SKp2, CDK4 and p-Rb levels and upregulation of p27 and p-ERK1/2. Pulsed, but not continuous, T supplementation decreased the expression levels of AR, p-ARser81 and CDK1 in both cellular models. The in vitro results were confirmed in an in vivo xenografts, providing evidence of a greater inhibitory activity of pulsed supraphysiological T supplementation than continuous treatment, both in terms of tumor volume and decreased AR, p-ARser81, PSA and CDK1 staining. The rapid cycling from hypogonadal to physiological or supra-physiological T intraprostatic concentrations results in cytostatic and senescence effects in preclinical models of androgen-sensitive Pca. Our preclinical evidence provides relevant new insights in the biology of Pca response to pulsed T supplementation.


Ferroptosis resistance cooperates with cellular senescence in the overt stage of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.

  • Antonella Vetuschi‎ et al.
  • European journal of histochemistry : EJH‎
  • 2022‎

Cellular senescence and ferroptosis are the two main, fine-tuned processes in tissue damage restraint; however, they can be overactivated in pathologies such as nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH), becoming dangerous stimuli. Senescence is characterized by a decline in cell division and an abnormal release of reactive oxygen species (ROS), and ferroptosis is represented by iron deposition associated with an excessive accumulation of ROS. ROS and cellular stress pathways are also drivers of NAFLD/NASH development. The etiology of NAFLD/NASH lies in poor diets enriched in fat and sugar. This food regimen leads to liver steatosis, resulting in progressive degeneration of the organ, with a late onset of irreversible fibrosis and cirrhosis. Few studies have investigated the possible connection between senescence and ferroptosis in NAFLD/NASH progression, despite the two events sharing some molecular players. We hypothesized a possible link between senescence and ferroptosis in a NAFLD background. To thoroughly investigate this in the context of "Western-style" diet (WSD) abuse, we used an amylin-modified liver NASH mouse model. The main NASH hallmarks have been confirmed in this model, as well as an increase in apoptosis, and Ki67 and p53 expression in the liver. Senescent beta-galactosidase-positive cells were elevated, as well as the expression of the related secretory molecules Il-6 and MMP-1. Features of DNA damage and iron-overload were found in the livers of NASH mice. Gpx4 (glutathione peroxidase 4) expression, counteracting ferroptotic cell death, was increased. Notably, an increased number of senescent cells showing overexpression of gpx4 was also found. Our data seem to suggest that senescent cells acquire a gpx4-mediated mechanism of ferroptosis resistance and thus remain in the liver, fostering the deterioration of liver fitness.


Is mastocytic colitis a specific clinical-pathological entity?

  • Filippo Vernia‎ et al.
  • European journal of histochemistry : EJH‎
  • 2022‎

The number of intestinal mast cells (MC) is increased in several types of colitis, but the mucosa of patients with chronic non-bloody diarrhea has not been studied. The current study sought to determine the relationship between MC counts and degranulation and the severity of symptoms in patients with chronic loose stools. Following a negative laboratory workup for the most common causes of chronic diarrhea, patients with chronic non-bloody loose stools were included in the study. Patients with macroscopic evidence of inflammation or organic disease were excluded after endoscopy with biopsies. Biopsies from the 179 patients in the study were stained with hematoxylin and eosin and anti-CD117 c-kit antibodies. Immunohistochemistry was used to assess the degree of MC degranulation. Out of the 179 patients, 128 had normal histologic findings suggestive of irritable bowel syndrome and were used as controls. Twenty-four presented with abnormally high MC counts (≥40 MC x HPF), 23 with ≥20 intraepithelial lymphocytes x HPF suggesting lymphocytic colitis, and 4 had both (≥40 MC and ≥20 intraepithelial lymphocytes x HPF). In the patients with high MC counts, figures were significantly higher in the right colon versus the left colon (p=0.016), but degranulation did not differ in the right versus the left colon (p=0.125). No age or sex-related difference was observed (p=0.527 and p=0.859 respectively). The prevalence of abdominal pain and bloating did not differ in the three groups (p=0.959 and p=0.140, respectively). Patients with lymphocytic colitis (p=0.008) and those with high MC counts (p=0.025) had significantly higher evacuation rates compared to controls. There was no difference between these two groups (p=0.831). Mast cell degranulation was not associated with the number of evacuations, abdominal pain, or bloating (p=0.51; p=0.41; p=0.42, respectively). The finding that a significantly higher number of evacuations was linked to increased MC in the colonic mucosa of a subset of patients with otherwise normal laboratory and endoscopic findings suggests that "mastocytic colitis" may be a new clinical-pathological entity responsible for chronic non-bloody diarrhea. Prospective studies with a larger number of patients, as well as endoscopic and histological follow-up, are needed to confirm this hypothesis.


Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage.

  • Francesco Marampon‎ et al.
  • Oncotarget‎
  • 2016‎

Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa.


Dual CXCR4 and E-Selectin Inhibitor, GMI-1359, Shows Anti-Bone Metastatic Effects and Synergizes with Docetaxel in Prostate Cancer Cell Intraosseous Growth.

  • Claudio Festuccia‎ et al.
  • Cells‎
  • 2019‎

Metastatic castration resistant prostate cancer (mCRPC) relapses due to acquired resistance to docetaxel-based chemotherapy and remains a major threat to patient survival. In this report, we tested the effectiveness of a dual CXCR4/E-selectin antagonist, GM-I1359, in vitro and in vivo, as a single agent or in combination with docetaxel (DTX). This agent was compared to the single CXCR4 antagonist, CTCE-9908, and E-selectin antagonist, GMI-1271. Here we demonstrate that CXCR4 antagonism reduced growth and enhanced DTX treatment in PCa cell lines as well as restored DTX effectiveness in DTX-resistant cell models. The efficacy of dual antagonist was higher respect to those observed for single CXCR4 antagonism. GM1359 impacted bone marrow colonization and growth in intraventricular and intratibial cell injection models. The anti-proliferative effects of GMI-1359 and DTX correlated with decreased size, osteolysis and serum levels of both mTRAP and type I collagen fragment (CTX) in intra-osseous tumours suggesting that the dual CXCR4/E-selectin antagonist was a docetaxel-sensitizing agent for bone metastatic growth. Single agent CXCR4 (CTCE-9908) and E-selectin (GMI-1271) antagonists resulted in lower sensitizing effects compared to GMI-1359. These data provide a biologic rationale for the use of a dual E-selectin/CXCR4 inhibitor as an adjuvant to taxane-based chemotherapy in men with mCRPC to prevent and reduce bone metastases.


Neurovascular alterations of muscularis propria in the human anterior vaginal wall in pelvic organ prolapse.

  • R Sferra‎ et al.
  • Journal of anatomy‎
  • 2019‎

In the pathophysiology and progression of pelvic organ prolapse (POP), it has been demonstrated that there is a reorganisation of the muscularis propria of the anterior vaginal wall due to a phenotypic smooth muscle cell to myofibroblast switch. An abnormal deposition of collagen type III seems to be influenced by the involvement of advanced glycation end-products. The aim of the present study was to evaluate the hypothesis that this connective tissue remodelling could also be associated with neurovascular alterations of the muscularis in women with POP compared with control patients. We examined 30 women with POP and 10 control patients treated for uterine fibromatosis. Immunohistochemical analysis, using glial fibrillary acidic protein, S-100 protein, receptor tyrosine kinase, neurofilament and α-smooth muscle actin antibodies, was performed. S-100, receptor tyrosine kinase and neurofilament were also evaluated using Western blot analysis. We observed a decrease in all neurovascular-tested markers in nerve bundles, ganglia and interstitial cells of Cajal from POP samples as compared with controls. Even if the processes responsible for these morphological alterations are still not known, it is conceivable that collagen III deposition in the anterior vaginal wall affects not only the architecture of the muscle layer but could also modify the intramuscular neurovascularisation and account for an alteration of the neuromuscular plasticity of the layer.


MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice.

  • Alessandra Tessitore‎ et al.
  • BMC cancer‎
  • 2016‎

Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Non-alcoholic fatty liver disease (NAFLD) is a frequent chronic liver disorder in developed countries. NAFLD can progress through the more severe non alcoholic steatohepatitis (NASH), cirrhosis and, lastly, HCC. Genetic and epigenetic alterations of coding genes as well as deregulation of microRNAs (miRNAs) activity play a role in HCC development. In this study, the C57BL/6J mouse model was long term high-fat (HF) or low-fat (LF) diet fed, in order to analyze molecular mechanisms responsible for the hepatic damage progression.


Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models.

  • Giovanni Luca Gravina‎ et al.
  • Oncotarget‎
  • 2017‎

Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT).


Prolonged Chronic Consumption of a High Fat with Sucrose Diet Alters the Morphology of the Small Intestine.

  • Roberta Sferra‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

(1) The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated. (2) To address this aspect, we administered a combined HFD with sucrose (HFD w/Suc, fat: 58% Kcal) regimen (18 months) to mice and investigated the morphological and molecular changes that occurred in the wall of proximal tract of the small intestine compared to the intestine of mice fed with a standard diet (SD) (fat: 18% Kcal). (3) We found an accumulation of lipid droplets in the mucosa of HFD w/Suc-fed mice that led to a disarrangement of mucosa architecture. Furthermore, we assessed the expression of several key players involved in lipid metabolism and inflammation, such as perilipin, leptin, leptin receptor, PI3K, p-mTOR, p-Akt, and TNF-α. All these molecules were increased in HFD mice compared to the SD group. We also evaluated anti-inflammatory molecules like adiponectin, adiponectin receptor, and PPAR-γ, and observed their significant reduction in the HFD w/Suc group compared to the control. Our data are in line with the knowledge that improper eating habits present a primary harmful assault on the bowel and the entire body's health. (4) These results represent a promising starting point for future studies, helping to better understand the complex and not fully elucidated spectrum of intestinal alterations induced by the overconsumption of fat.


SIRT1 participates in the response to methylglyoxal-dependent glycative stress in mouse oocytes and ovary.

  • Giovanna Di Emidio‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2019‎

Methylglyoxal (MG), a highly reactive dicarbonyl derived from metabolic processes, is the most powerful precursor of advanced glycation end products (AGEs). Glycative stress has been recently associated with ovarian dysfunctions in aging and PCOS syndrome. We have investigated the role of the NAD+-dependent Class III deacetylase SIRT1 in the adaptive response to MG in mouse oocytes and ovary. In mouse oocytes, MG induced up-expression of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) genes, components of the main MG detoxification system, whereas inhibition of SIRT1 by Ex527 or sirtinol reduced this response. In addition, the inhibition of SIRT1 worsened the effects of MG on oocyte maturation rates, while SIRT1 activation by resveratrol counteracted MG insult. Ovaries from female mice receiving 100 mg/kg MG by gastric administration for 28 days (MG mice) exhibited increased levels of SIRT1 along with over-expression of catalase, superoxide dismutase 2, SIRT3, PGC1α and mtTFA. Similar levels of MG-derived AGEs were observed in the ovaries from MG and control groups, along with enhanced protein expression of glyoxalase 1 in MG mice. Oocytes ovulated by MG mice exhibited atypical meiotic spindles, a condition predisposing to embryo aneuploidy. Our results from mouse oocytes revealed for the first time that SIRT1 could modulate MG scavenging by promoting expression of glyoxalases. The finding that up-regulation of glyoxalase 1 is associated with that of components of a SIRT1 functional network in the ovaries of MG mice provides strong evidence that SIRT1 participates in the response to methylglyoxal-dependent glycative stress in the female gonad.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: