Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

The human cap-binding complex is functionally connected to the nuclear RNA exosome.

  • Peter Refsing Andersen‎ et al.
  • Nature structural & molecular biology‎
  • 2013‎

Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we report a physical link between the human exosome and the cap-binding complex (CBC). The CBC associates with the ARS2 protein to form CBC-ARS2 (CBCA) and then further connects, together with the ZC3H18 protein, to the nuclear exosome targeting (NEXT) complex, thus forming CBC-NEXT (CBCN). RNA immunoprecipitation using CBCN factors as well as the analysis of combinatorial depletion of CBCN and exosome components underscore the functional relevance of CBC-exosome bridging at the level of target RNA. Specifically, CBCA suppresses read-through products of several RNA families by promoting their transcriptional termination. We suggest that the RNP 5' cap links transcription termination to exosomal RNA degradation through CBCN.


Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins.

  • Marie Skogs‎ et al.
  • Journal of proteome research‎
  • 2017‎

Antibodies are indispensible research tools, yet the scientific community has not adopted standardized procedures to validate their specificity. Here we present a strategy to systematically validate antibodies for immunofluorescence (IF) applications using gene tagging. We have assessed the on- and off-target binding capabilities of 197 antibodies using 108 cell lines expressing EGFP-tagged target proteins at endogenous levels. Furthermore, we assessed batch-to-batch effects for 35 target proteins, showing that both the on- and off-target binding patterns vary significantly between antibody batches and that the proposed strategy serves as a reliable procedure for ensuring reproducibility upon production of new antibody batches. In summary, we present a systematic scheme for antibody validation in IF applications using endogenous expression of tagged proteins. This is an important step toward a reproducible approach for context- and application-specific antibody validation and improved reliability of antibody-based experiments and research data.


Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation.

  • Leilei Xu‎ et al.
  • Cell reports‎
  • 2021‎

Stable transmission of genetic material during cell division requires accurate chromosome segregation. PLK1 dynamics at kinetochores control establishment of correct kinetochore-microtubule attachments and subsequent silencing of the spindle checkpoint. However, the regulatory mechanism responsible for PLK1 activity in prometaphase has not yet been affirmatively identified. Here we identify Apolo1, which tunes PLK1 activity for accurate kinetochore-microtubule attachments. Apolo1 localizes to kinetochores during early mitosis, and suppression of Apolo1 results in misaligned chromosomes. Using the fluorescence resonance energy transfer (FRET)-based PLK1 activity reporter, we found that Apolo1 sustains PLK1 kinase activity at kinetochores for accurate attachment during prometaphase. Apolo1 is a cognate substrate of PLK1, and the phosphorylation enables PP1γ to inactivate PLK1 by dephosphorylation. Mechanistically, Apolo1 constitutes a bridge between kinase and phosphatase, which governs PLK1 activity in prometaphase. These findings define a previously uncharacterized feedback loop by which Apolo1 provides fine-tuning for PLK1 to guide chromosome segregation in mitosis.


Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions.

  • Nina C Hubner‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC-green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.


PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation.

  • Susana Montenegro Gouveia‎ et al.
  • Journal of cell science‎
  • 2018‎

The centrosome is an important microtubule-organising centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical for the recruitment of several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation ( Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α- and β-tubulins. In Xenopus extracts, PLK4 assemblies additionally recruit STIL, a substrate of PLK4, and the microtubule nucleator γ-tubulin, forming acentriolar MTOCs de novo The assembly of these robust microtubule asters is independent of dynein, similar to what is found for centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organising catalytic scaffold that recruits centriole components, PCM factors and α- and β-tubulins, leading to MTOC formation.This article has an associated First Person interview with the first author of the paper.


A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting.

  • Racha Chouaib‎ et al.
  • Developmental cell‎
  • 2020‎

Local translation allows spatial control of gene expression. Here, we performed a dual protein-mRNA localization screen, using smFISH on 523 human cell lines expressing GFP-tagged genes. 32 mRNAs displayed specific cytoplasmic localizations with local translation at unexpected locations, including cytoplasmic protrusions, cell edges, endosomes, Golgi, the nuclear envelope, and centrosomes, the latter being cell-cycle-dependent. Automated classification of mRNA localization patterns revealed a high degree of intercellular heterogeneity. Surprisingly, mRNA localization frequently required ongoing translation, indicating widespread co-translational RNA targeting. Interestingly, while P-body accumulation was frequent (15 mRNAs), four mRNAs accumulated in foci that were distinct structures. These foci lacked the mature protein, but nascent polypeptide imaging showed that they were specialized translation factories. For β-catenin, foci formation was regulated by Wnt, relied on APC-dependent polysome aggregation, and led to nascent protein degradation. Thus, translation factories uniquely regulate nascent protein metabolism and create a fine granular compartmentalization of translation.


Local and dynamic regulation of neuronal glycolysis in vivo.

  • Aaron D Wolfe‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here we adapted a biosensor for glycolysis, HYlight, for use in C. elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons perform glycolysis cell-autonomously, and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function, and uncovers new relationships between neuronal identities and metabolic landscapes in vivo.


Characterization of RNA content in individual phase-separated coacervate microdroplets.

  • Damian Wollny‎ et al.
  • Nature communications‎
  • 2022‎

Condensates formed by complex coacervation are hypothesized to have played a crucial part during the origin-of-life. In living cells, condensation organizes biomolecules into a wide range of membraneless compartments. Although RNA is a key component of biological condensates and the central component of the RNA world hypothesis, little is known about what determines RNA accumulation in condensates and to which extend single condensates differ in their RNA composition. To address this, we developed an approach to read the RNA content from single synthetic and protein-based condensates using high-throughput sequencing. We find that certain RNAs efficiently accumulate in condensates. These RNAs are strongly enriched in sequence motifs which show high sequence similarity to short interspersed elements (SINEs). We observe similar results for protein-derived condensates, demonstrating applicability across different in vitro reconstituted membraneless organelles. Thus, our results provide a new inroad to explore the RNA content of phase-separated droplets at single condensate resolution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: