2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Cytokine IL-36γ improves CAR T-cell functionality and induces endogenous antitumor response.

  • Xinghuo Li‎ et al.
  • Leukemia‎
  • 2021‎

Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable responses in B-cell malignancies. However, many patients suffer from limited response and tumor relapse due to lack of persisting CAR T cells and immune escape. These clinical challenges have compromised the long-term efficacy of CAR T-cell therapy and call for the development of novel CAR designs. We demonstrated that CAR T cells secreting a cytokine interleukin-36γ (IL-36γ) showed significantly improved CAR T-cell expansion and persistence, and resulted in superior tumor eradication compared with conventional CAR T cells. The enhanced cellular function by IL-36γ was mediated through an autocrine manner. In addition, activation of endogenous antigen-presenting cells (APCs) and T cells by IL-36γ aided the formation of a secondary antitumor response, which delayed the progression of antigen-negative tumor challenge. Together, our data provide preclinical evidence to support the translation of this design for an improved CAR T-cell-mediated antitumor response.


Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System.

  • Mauro P Avanzi‎ et al.
  • Cell reports‎
  • 2018‎

Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.


CD40 Ligand-Modified Chimeric Antigen Receptor T Cells Enhance Antitumor Function by Eliciting an Endogenous Antitumor Response.

  • Nicholas F Kuhn‎ et al.
  • Cancer cell‎
  • 2019‎

Chimeric antigen receptor (CAR) T cells provide great efficacy in B cell malignancies. However, improved CAR T cell therapies are still needed. Here, we engineered tumor-targeted CAR T cells to constitutively express the immune-stimulatory molecule CD40 ligand (CD40L) and explored efficacy in different mouse leukemia/lymphoma models. We observed that CD40L+ CAR T cells circumvent tumor immune escape via antigen loss through CD40/CD40L-mediated cytotoxicity and induction of a sustained, endogenous immune response. After adoptive cell transfer, the CD40L+ CAR T cells displayed superior antitumor efficacy, licensed antigen-presenting cells, enhanced recruitment of immune effectors, and mobilized endogenous tumor-recognizing T cells. These effects were absent in Cd40-/- mice and provide a rationale for the use of CD40L+ CAR T cells in cancer treatment.


CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function.

  • Nicholas F Kuhn‎ et al.
  • Nature communications‎
  • 2020‎

While effective in specific settings, adoptive chimeric antigen receptor (CAR) T cell therapy for cancer requires further improvement and optimization. Our previous results show that CD40L-overexpressing CAR T cells mobilize endogenous immune effectors, resulting in improved antitumor immunity. However, the cell populations required for this protective effect remain to be identified. Here we show, by analyzing Batf3-/- mice lacking the CD103+ conventional dendritic cell type 1 (cDC1) subpopulation important for antigen cross-presentation, that CD40L-overexpressing CAR T cells elicit an impaired antitumor response in the absence of cDC1s. We further find that CD40L-overexpressing CAR T cells stimulate tumor-resident CD11b-CD103- double-negative (DN) cDCs to proliferate and differentiate into cDC1s in wild-type mice. Finally, re-challenge experiments show that endogenous CD8+ T cells are required for protective antitumor memory in this setting. Our findings thus demonstrate the stimulatory effect of CD40L-overexpressing CAR T cells on innate and adaptive immune cells, and provide a rationale for using CD40L-overexpressing CAR T cells to improve immunotherapy responses.


Functional impact of cancer patient-associated Bcl-xL mutations.

  • Tiantian Zhang‎ et al.
  • MedComm‎
  • 2020‎

Bcl-xL, an antiapoptotic protein, is frequently overexpressed in cancer to promote survival of tumor cells. However, we have previously shown that Bcl-xL promotes migration, invasion, and metastasis independent of its antiapoptotic function in mitochondria. The pro-metastatic function of Bcl-xL may require its translocation into the nucleus. Besides overexpression, patient-associated mutations of Bcl-xL have been identified in large-scale cancer genomics projects. Understanding the functions of these mutations will guide the development of precision medicine. Here, we selected four patient-associated Bcl-xL mutations, R132W, N136K, R165W, and A201T, to investigate their impacts on antiapoptosis, migration, and nuclear translocation. We found that all four mutation proteins could be detected in both the nucleus and cytosol. Although all four mutations disrupted the antiapoptosis function, one of these mutants, N136K, significantly improved the ability to promote cell migration. These data suggest the importance of developing novel Bcl-xL inhibitors to ablate both antiapoptotic and pro-metastatic functions of Bcl-xL in cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: