Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

The role of LamininB2 (LanB2) during mesoderm differentiation in Drosophila.

  • Georg Wolfstetter‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2012‎

In Drosophila, four genes encode for laminin subunits and the formation of two laminin heterotrimers has been postulated. We report the identification of mutations in the Drosophila LamininB2 (LanB2) gene that encodes for the only laminin γ subunit and is found in both heterotrimers. We describe their effects on embryogenesis, in particular the differentiation of visceral tissues with respect to the ECM. Analysis of mesoderm endoderm interaction indicates disrupted basement membranes and defective endoderm migration, which finally interferes with visceral myotube stretching. Extracellular deposition of laminin is blocked due to the loss of the LanB2 subunit, resulting in an abnormal distribution of ECM components. Our data, concerning the different function of both trimers during organogenesis, suggest that these trimers might act in a cumulative way and probably at multiple steps during ECM assembly. We also observed genetic interactions with kon-tiki and thrombospondin, indicating a role for laminin during muscle attachment.


WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion.

  • Susanne Berger‎ et al.
  • Journal of cell science‎
  • 2008‎

Myoblast fusion takes place in two steps in mammals and in Drosophila. First, founder cells (FCs) and fusion-competent myoblasts (FCMs) fuse to form a trinucleated precursor, which then recruits further FCMs. This process depends on the formation of the fusion-restricted myogenic-adhesive structure (FuRMAS), which contains filamentous actin (F-actin) plugs at the sites of cell contact. Fusion relies on the HEM2 (NAP1) homolog Kette, as well as Blow and WASP, a member of the Wiskott-Aldrich-syndrome protein family. Here, we show the identification and characterization of schwächling--a new Arp3-null allele. Ultrastructural analyses demonstrate that Arp3 schwächling mutants can form a fusion pore, but fail to integrate the fusing FCM. Double-mutant experiments revealed that fusion is blocked completely in Arp3 and wasp double mutants, suggesting the involvement of a further F-actin regulator. Indeed, double-mutant analyses with scar/WAVE and with the WASP-interacting partner vrp1 (sltr, wip)/WIP show that the F-actin regulator scar also controls F-actin formation during myoblast fusion. Furthermore, the synergistic phenotype observed in Arp3 wasp and in scar vrp1 double mutants suggests that WASP and SCAR have distinct roles in controlling F-actin formation. From these findings we derived a new model for actin regulation during myoblast fusion.


The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc.

  • Robert Klapper‎ et al.
  • Mechanisms of development‎
  • 2002‎

The visceral musculature of the Drosophila midgut consists of an inner layer of circular and an outer layer of longitudinal muscles. Here, we show that the circular muscles are organised as binucleate syncytia that persist through metamorphosis. At stage 11, prior to the onset of the fusion processes, we detected two classes of myoblasts within the visceral trunk mesoderm. One class expresses the founder-cell marker rP298-LacZ in a one- to two-cells-wide strip along the ventralmost part of the visceral mesoderm, whereas the adjacent two to three cell rows are characterised by the expression of Sticks-and-stones (SNS). During the process of cell fusion at stage 12 SNS expression decreases within the newly formed syncytia that spread out dorsally over the midgut. At both margins of the visceral band several cells remain unfused and continue to express SNS. Additional rP298-LacZ-expressing cells arise from the posterior tip of the mesoderm, migrate anteriorly and eventually fuse with the remaining SNS-expressing cells, generating the longitudinal muscles. Thus, although previous studies proposed a separate primordium for the longitudinal musculature located at the posteriormost part of the mesoderm anlage, our cell lineage analyses as well as our morphological observations reveal that a second population of cells originates from the trunk mesoderm. Mutations of genes that are involved in somatic myoblast fusion, such as sns, dumbfounded (duf) or myoblast city (mbc), also cause severe defects within the visceral musculature. The circular muscles are highly unorganised while the longitudinal muscles are almost absent. Thus the fusion process seems to be essential for a proper visceral myogenesis. Our results provide strong evidence that the founder-cell hypothesis also applies to visceral myogenesis, employing the same genetic components as are used in the somatic myoblast fusion processes.


Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as receptor for Jeb signalling.

  • Christiana Stute‎ et al.
  • Development (Cambridge, England)‎
  • 2004‎

The visceral muscles of the Drosophila midgut consist of syncytia and arise by fusion of founder and fusion-competent myoblasts, as described for the somatic muscles. A single-step fusion results in the formation of binucleate circular midgut muscles, whereas a multiple-step fusion process produces the longitudinal muscles. A prerequisite for muscle fusion is the establishment of myoblast diversity in the mesoderm prior to the fusion process itself. We provide evidence for a role of Notch signalling during establishment of the different cell types in the visceral mesoderm, demonstrating that the basic mechanism underlying the segregation of somatic muscle founder cells is also conserved during visceral founder cell determination. Searching for genes involved in the determination and differentiation of the different visceral cell types, we identified two independent mutations causing loss of visceral midgut muscles. In both of these mutants visceral muscle founder cells are missing and the visceral mesoderm consists of fusion-competent myoblasts only. Thus, no fusion occurs resulting in a complete disruption of visceral myogenesis. Subsequent characterisation of the mutations revealed that they are novel alleles of jelly belly (jeb) and the Drosophila Alk homologue named milliways (mili(Alk)). We show that the process of founder cell determination in the visceral mesoderm depends on Jeb signalling via the Milliways/Alk receptor. Moreover, we demonstrate that in the somatic mesoderm determination of the opposite cell type, the fusion-competent myoblasts, also depends on Jeb and Alk, revealing different roles for Jeb signalling in specifying myoblast diversity. This novel mechanism uncovers a crosstalk between somatic and visceral mesoderm leading not only to the determination of different cell types but also maintains the separation of mesodermal tissues, the somatic and splanchnic mesoderm.


Serpent/dGATAb regulates Laminin B1 and Laminin B2 expression during Drosophila embryogenesis.

  • Uwe Töpfer‎ et al.
  • Scientific reports‎
  • 2019‎

Transcriptional regulation of Laminin expression during embryogenesis is a key step required for proper ECM assembly. We show, that in Drosophila the Laminin B1 and Laminin B2 genes share expression patterns in mesodermal cells as well as in endodermal and ectodermal gut primordia, yolk and amnioserosa. In the absence of the GATA transcription factor Serpent, the spatial extend of Laminin reporter gene expression was strongly limited, indicating that Laminin expression in many tissues depends on Serpent activity. We demonstrate a direct binding of Serpent to the intronic enhancers of Laminin B1 and Laminin B2. In addition, ectopically expressed Serpent activated enhancer elements of Laminin B1 and Laminin B2. Our results reveal Serpent as an important regulator of Laminin expression across tissues.


Analysis of extracellular matrix composition in the visceral muscles of Nidogen mutant larvae in Drosophila.

  • Uwe Töpfer‎ et al.
  • microPublication biology‎
  • 2020‎

No abstract available


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: