Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles.

  • Ambily Abraham‎ et al.
  • Scientific reports‎
  • 2016‎

The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.


Abrin immunotoxin: targeted cytotoxicity and intracellular trafficking pathway.

  • Sudarshan Gadadhar‎ et al.
  • PloS one‎
  • 2013‎

Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy.


Combination of neutralizing monoclonal antibodies against Hepatitis C virus E2 protein effectively blocks virus infection.

  • Mihika Bose‎ et al.
  • Virus research‎
  • 2016‎

Hepatitis C virus (HCV) represents a major global health threat. The envelope glycoproteins, E1-E2 of HCV play an important role in infection by binding to hepatocyte surface receptors leading to viral entry. Several regions on the E1-E2 are conserved for maintaining structural stability, despite the high mutation rate of HCV. Identification of antigenic determinants in these domains would aid in the development of anti-virals. The present study was aimed to delineate neutralizing epitopes by generating monoclonal antibodies (mAbs) to envelope proteins that can block virus binding and entry. Using HCV-like particles (HCV-LPs) corresponding to genotype 3a (prevalent in India), we obtained three mAbs specific for the E2 protein that significantly inhibited virus binding to hepatoma cells. Using overlapping protein fragments and peptides of the E2 protein, the epitopes corresponding to the mAbs were delineated. MAbs H6D3 and A10F2 recognise sequential linear epitopes, whereas, mAb E3D8 recognises a discontinuous epitope. The epitope of mAb E3D8 overlaps with the CD81 receptor-binding site and that of mAb A10F2 with the hypervariable region 2 of the E2 protein. The epitopes corresponding to these mAbs are distinct and unique. A combination of these antibodies significantly inhibited HCV binding and entry in both HCV pseudoparticle (in vitro) and HCV cell culture (ex vivo) system compared to the mAbs alone (P<0.0001). In conclusion, our findings support the potential of employing a cocktail of neutralizing mAbs in the management of HCV infection.


Endoplasmic reticulum stress-mediated activation of p38 MAPK, Caspase-2 and Caspase-8 leads to abrin-induced apoptosis.

  • Ritu Mishra‎ et al.
  • PloS one‎
  • 2014‎

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2α and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.


BODIPY-attached zinc(II) complexes of curcumin drug for visible light assisted photo-sensitization, cellular imaging and targeted PDT.

  • Arnab Bhattacharyya‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Boron-dipyrromethene (BODIPY) based photosensitizers as porphyrinoids and curcumin as natural product possess exciting photophysical features suitable for theranostic applications, namely, imaging and photodynamic therapy (PDT). Limited aqueous solubility and insufficient physiological stability, however, reduce their efficacy significantly. We have designed a novel strategy to deliver these two unusable cytotoxins simultaneously in cancer cells and herein, report the synthesis, characterization and imaging-assisted photocytotoxicity of three zinc(II) complexes containing N3-donor dipicolylamine (dpa) ligands (L1-3) and O,O-donor curcumin (Hcur) viz. [Zn(L1)(cur)]Cl (1), [Zn(L2)(cur)]Cl (2) and [Zn(L3)(cur)]Cl (3), where L2 and L3 have pendant fluorescent BODIPY and non-emissive di-iodo-BODIPY moieties. Metal chelation imparted remarkable biological stability (pH ∼7.4) to the respective ligands and induces significant aqueous solubility. These ternary complexes could act as replacements of the existing metalloporphyrin-based PDT photosensitizers as their visible-light photosensitizing ability is reinforced by the dual presence of blue light absorbing curcumin and green light harvesting BODIPY units. Complex 2 having emissive BODIPY unit L2 and curcumin, showed mitochondria selective localization in HeLa, MCF-7 cancer cells and complex 3, the di-iodinated analogue of complex 2, exhibited type-I/II PDT activity via inducing apoptosis through mitochondrial membrane disruption in cancer cells while being significantly nontoxic in dark and to the healthy cells.


Inhibition of cancer cell proliferation and apoptosis-inducing activity of fungal taxol and its precursor baccatin III purified from endophytic Fusarium solani.

  • Balabhadrapatruni Vsk Chakravarthi‎ et al.
  • Cancer cell international‎
  • 2013‎

Taxol (generic name paclitaxel), a plant-derived antineoplastic agent, used widely against breast, ovarian and lung cancer, was originally isolated from the bark of the Pacific yew, Taxus brevifolia. The limited supply of the drug has prompted efforts to find alternative sources, such as chemical synthesis, tissue and cell cultures of the Taxus species both of which are expensive and yield low levels. Fermentation processes with microorganisms would be the methods of choice to lower the costs and increase yields. Previously we have reported that F. solani isolated from T. celebica produced taxol and its precursor baccatin III in liquid grown cultures J Biosci 33:259-67, 2008. This study was performed to evaluate the inhibition of proliferation and induction of apoptosis of cancer cell lines by the fungal taxol and fungal baccatin III of F. solani isolated from T. celebica.


A carboxy terminal domain of the L protein of rinderpest virus possesses RNA triphosphatase activity - The first enzyme in the viral mRNA capping pathway.

  • Piyush Kumar Singh‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640-1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins.


Mechanistic insights into the neutralization of cytotoxic abrin by the monoclonal antibody D6F10.

  • Shradha Bagaria‎ et al.
  • PloS one‎
  • 2013‎

Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1∶10 molar concentration of abrin:antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: