Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Chemical characterization and in vitro immunomodulatory effects of different extracts of moss Hedwigia ciliata (Hedw.) P. Beauv. from the Vršačke Planine Mts., Serbia.

  • Marija R Mandić‎ et al.
  • PloS one‎
  • 2021‎

Bioactive compounds from natural sources are of great importance because of their potential pharmacological activity and tremendous structural diversity. In this study, the chemical composition of different moss extracts of Hedwigia ciliata P. Beauv. have been examined, as well as their antioxidant, antineurodegenerative/anti-neuroinflammatory, antidiabetic, and antiproliferative potential. The extracts were prepared by Soxhlet extractor using solvents of different polarity. Chemical characterization of the extracts revealed the presence of phenolics and flavonoid compounds, together with triterpenoids as secondary metabolites of high biological activity. Significant antioxidant properties of all the extracts were exhibited using the β-carotene assay. The highest activities were found for water:ethanol extract (with the highest inhibition rate of 96%), but also significant inhibition was measured for ethanol and ethyl acetate extracts (80% and 70%, respectively). Confirmation of biocompatibility of investigated moss extracts has been performed using normal human fibroblast cell line, MRC-5. The H. ciliata extracts exhibited significant antiproliferative activity (~ 50%) against the MDA-MB-231 (human breast adenocarcinoma cell line), which has not previously been reported elsewhere. The Griess assay confirmed the potential anti-neuroinflammatory activity of the extracts, as significant effects in reducing NO production by LPS-stimulated BV2 (normal murine microglia cell line) was observed. This data is in line with noted antineurodegenerative potential measured by the inhibition of acetylcholinesterase (with the highest inhibition rate of 60% for ethyl acetate extract) and tyrosinase (with the highest inhibition rate of 70% for ethanol extract). Additionally, the H. ciliata extracts exhibited significant antidiabetic effect mediated by α-glucosidase inhibition (with the highest inhibition rate of 80% for ethyl acetate extract). The obtained data suggest the presence of immunomodulatory effects of the moss extracts in vitro, which allows the design of new experiments aimed at detecting and characterizing bioactive compounds of the extracts and additionally elucidate detailed mechanisms of their effects.


The Influence of Seasonality on Secondary Metabolite Profiles and Neuroprotective Activities of Moss Hypnum cupressiforme Extracts: In Vitro and In Silico Study.

  • Tanja M Lunić‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Numerous representatives of mosses, including Hypnum cupressiforme, have been used to alleviate different inflammation-related conditions. However, the mode of action underlying this anti-inflammatory potential has been poorly understood. Moreover, the influence of seasonality on the chemical composition and biological activity of mosses is generally overlooked. This study aimed to investigate the influence of seasonal changes (spring, summer, and autumn) on secondary metabolite composition and biological activities of ethyl acetate H. cupressiforme extracts. Antioxidant activity was measured using β-carotene bleaching assay, while MTT, NBT, ELISA, and Griess assays were carried out to explore the anti-neuroinflammatory and neuroprotective potential of extracts. Inhibitory activities on acetylcholinesterase and tyrosinase were assessed experimentally and by docking analysis. The highest content of secondary metabolites and antioxidant activity were observed in moss during the summer. Extracts inhibited the secretion of ROS, NO, TNF-α, and IL-6, alleviating the inflammatory potential of H2O2 and LPS in microglial and neuronal cells. Strong inhibitory effects on acetylcholinesterase and tyrosinase were observed in vitro. Docking analyses revealed high-affinity interactions of secondary metabolites present in H. cupressiforme with important enzyme residues. Altogether, these results reveal the neuroprotective potential and the significance of seasonal fluctuations on secondary metabolite content and biological activities in moss H. cupressiforme.


Analysis of the Qualitative and Quantitative Content of the Phenolic Compounds of Selected Moss Species under NaCl Stress.

  • Marija V Ćosić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The response to salt stress analysed by quantitative and qualitative analyses in three selected moss species was studied. Non-halophytic funaroid Physcomitrium patens and two halophytic mosses, funaroid Entosthodon hungaricus and pottioid Hennediella heimii were exposed to salt stress under controlled in vitro conditions. The results clearly showed various phenolics to be present and included to some extent as a non-enzymatic component of oxidative, i.e., salt stress. The common pattern of responses characteristic of phenolic compounds was not present in these moss species, but in all three species the role of phenolics to stress tolerance was documented. The phenolic p-coumaric acid detected in all three species is assumed to be a common phenolic included in the antioxidative response and salt-stress tolerance. Although the stress response in each species also included other phenolics, the mechanisms were different, and also dependent on the stress intensity and duration.


Effects of Cesium on Physiological Traits of the Catherine's Moss Atrichum undulatum Hedw.

  • Jelena N Stanojković‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Mosses are proven bioindicators of living environments. It is known that mosses accumulate pollutants from precipitates and, to some lesser extent, from the substrate. In this study, the effects of cesium (Cs) on the physiological traits of acrocarp polytrichaceous Catherine's moss (Atrichum undulatum Hedw.) were studied under controlled, in vitro conditions. Cesium can be found in the environment in a stable form (133Cs) and as a radioactive isotope (134Cs and 137Cs). Belonging to the same group of elements, Cs and potassium (K) share various similarities, due to which Cs can interfere with this essential element and thus possibly alter the plant's metabolism. Results have shown that Cs affects the measured physiological characteristics of A. undulatum, although the changes to antioxidative enzyme activities were not drastic following Cs treatments. Therefore, the activities of antioxidative enzymes at lower pH values are more the consequence of pH effects on enzymatic conformation than simply the harmful effects of Cs. Moreover, Cs did not affect the survival of plants grown on the solid substrate nor plants grown in conditions of light and heavy rain simulation using Cs with variable pH, indicating that Cs is not harmful in this form for the studied species A. undulatum.


Extracts Characterization and In Vitro Evaluation of Potential Immunomodulatory Activities of the Moss Hypnum cupressiforme Hedw.

  • Tanja M Lunić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Recently, there has been an increasing interest in the chemistry and biological potential of mosses, since a large number of biologically active compounds have been found within these species. This study aimed at examining the chemical composition and immunomodulatory potential (antioxidant, antidiabetic, anti-neuroinflammatory/antineurodegenerative, and antitumor activities) of moss Hypnum cupressiforme Hedw. extracts. Corresponding extracts have been obtained applying Soxhlet extractor. The chemical characterization was performed using spectrophotometric assays and liquid chromatography-mass spectrometry (LC-MS). The extracts were analyzed for antioxidant activity and for inhibitory activities on α-glucosidase, α-amylase, acetylcholinesterase, and tyrosinase. Additionally, extracts were tested against four cell lines-MRC-5, BV2, HCT-116, and MDA-MB-231-for antitumor and anti-inflammatory activities. Chemical analysis of extracts revealed the presence of flavonoids, phenolic acids, and triterpenoids. Major compounds identified by LC-MS in H. cupressiforme were kaempferol and five phenolic acids: p-hydroxybenzoic, protocatechuic, p-coumaric, gallic, and caffeic acid. According to biochemical assays the investigated extracts exhibited significant immunomodulatory potential. Significant antiproliferative potential against MDA-MB-231 cells has been observed together with the promising anti-neuroinflammatory application. The obtained data suggest that moss H. cupressiforme is a valuable natural source of biologically active compounds with potential application in the pharmaceutical industry.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: