Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Touchscreen-Based Cognitive Training Alters Functional Connectivity Patterns in Aged But Not Young Male Rats.

  • Leslie S Gaynor‎ et al.
  • eNeuro‎
  • 2023‎

Age-related cognitive decline is related to cellular and systems-level disruptions across multiple brain regions. Because age-related cellular changes within different structures do not show the same patterns of dysfunction, interventions aimed at optimizing function of large-scale brain networks may show greater efficacy at improving cognitive outcomes in older adults than traditional pharmacotherapies. The current study aimed to leverage a preclinical rat model of aging to determine whether cognitive training in young and aged male rats with a computerized paired-associates learning (PAL) task resulted in changes in global resting-state functional connectivity. Moreover, seed-based functional connectivity was used to examine resting state connectivity of cortical areas involved in object-location associative memory and vulnerable in old age, namely the medial temporal lobe (MTL; hippocampal cortex and perirhinal cortex), retrosplenial cortex (RSC), and frontal cortical areas (prelimbic and infralimbic cortices). There was an age-related increase in global functional connectivity between baseline and post-training resting state scans in aged, cognitively trained rats. This change in connectivity following cognitive training was not observed in young animals, or rats that traversed a track for a reward between scan sessions. Relatedly, an increase in connectivity between perirhinal and prelimbic cortices, as well as reduced reciprocal connectivity within the RSC, was found in aged rats that underwent cognitive training, but not the other groups. Subnetwork activation was associated with task performance across age groups. Greater global functional connectivity and connectivity between task-relevant brain regions may elucidate compensatory mechanisms that can be engaged by cognitive training.


A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity.

  • Abbi R Hernandez‎ et al.
  • Frontiers in aging neuroscience‎
  • 2023‎

Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns.


Back to the future: preserved hippocampal network activity during reverse ambulation.

  • Andrew P Maurer‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

During movement, there is a transition of activity across the population, such that place-field centers ahead of the rat are sequentially activated in the order that they will be encountered. Although the mechanisms responsible for this sequence updating are unknown, two classes of models can be considered. The first class involves head-direction information for activating neurons in the order that their place fields will be traversed. An alternative model contends that motion and turn-related information from the posterior parietal cortex shift the subset of active hippocampal cells across the population. To explicitly test these two models, rodents were trained to run backward on a linear track, placing movement in opposition with head orientation. Although head-direction did not change between running conditions, place-field activity remapped and there was an increase in place-field size during backward running compared with forward. The population activity, however, could still be used to reconstruct the location of the rat accurately. Moreover, theta phase precession was maintained in both running conditions, indicating preservation of place-field sequences on short-time scales. The observation that sequence encoding persists even when the animal is orientated away from the direction of movement favors the concept that posterior parietal cortical mechanisms may be partially responsible for updating hippocampal activity patterns.


Age-related Changes in Lateral Entorhinal and CA3 Neuron Allocation Predict Poor Performance on Object Discrimination.

  • Andrew P Maurer‎ et al.
  • Frontiers in systems neuroscience‎
  • 2017‎

Age-related memory deficits correlate with dysfunction in the CA3 subregion of the hippocampus, which includes both hyperactivity and overly rigid activity patterns. While changes in intrinsic membrane currents and interneuron alterations are involved in this process, it is not known whether alterations in afferent input to CA3 also contribute. Neurons in layer II of the lateral entorhinal cortex (LEC) project directly to CA3 through the perforant path, but no data are available regarding the effects of advanced age on LEC activity and whether these activity patterns update in response to environmental change. Furthermore, it is not known the extent to which age-related deficits in sensory discrimination relate to the inability of aged CA3 neurons to update in response to new environments. Young and aged rats were pre-characterized on a LEGO© object discrimination task, comparable to behavioral tests in humans in which CA3 hyperactivity has been linked to impairments. The cellular compartment analysis of temporal activity with fluorescence in situ hybridization for the immediate-early gene Arc was then used to identify the principal cell populations that were active during two distinct epochs of random foraging in different environments. This approach enabled the extent to which rats could discriminate two similar objects to be related to the ability of CA3 neurons to update across different environments. In both young and aged rats, there were animals that performed poorly on the LEGO object discrimination task. In the aged rats only, however, the poor performers had a higher percent of CA3 neurons that were active during random foraging in a novel environment, but this is not related to the ability of CA3 neurons to remap when the environment changed. Afferent neurons to CA3 in LEC, as identified with the retrograde tracer choleratoxin B (CTB), also showed a higher percentage of cells that were positive for Arc mRNA in aged poor performing rats. This suggests that LEC contributes to the hyperactivity seen in CA3 of aged animals with object discrimination deficits and age-related cognitive decline may be the consequence of dysfunction endemic to the larger network.


Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

  • Antonio Fernández-Ruiz‎ et al.
  • Neuron‎
  • 2017‎

Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation.


The influence of objects on place field expression and size in distal hippocampal CA1.

  • Sara N Burke‎ et al.
  • Hippocampus‎
  • 2011‎

The perirhinal and lateral entorhinal cortices send prominent projections to the portion of the hippocampal CA1 subfield closest to the subiculum, but relatively little is known regarding the contributions of these cortical areas to hippocampal activity patterns. The anatomical connections of the lateral entorhinal and perirhinal cortices, as well as lesion data, suggest that these brain regions may contribute to the perception of complex stimuli such as objects. The current experiments investigated the degree to which three-dimensional objects affect place field size and activity within the distal region (closest to the subiculum) of CA1. The activity of CA1 pyramidal cells was monitored as rats traversed a circular track that contained no objects in some conditions and three-dimensional objects in other conditions. In the area of CA1 that receives direct lateral entorhinal input, three factors differentiated the objects-on-track conditions from the no-object conditions: more pyramidal cells expressed place fields when objects were present, adding or removing objects from the environment led to partial remapping in CA1, and the size of place fields decreased when objects were present. In addition, a proportion of place fields remapped under conditions in which the object locations were shuffled, which suggests that at least some of the CA1 neurons' firing patterns were sensitive to a particular object in a particular location. Together, these data suggest that the activity characteristics of neurons in the areas of CA1 receiving direct input from the perirhinal and lateral entorhinal cortices are modulated by non-spatial sensory input such as three-dimensional objects. © 2011 Wiley-Liss, Inc.


Methamphetamine regulation of activity and topology of ventral midbrain networks.

  • Douglas R Miller‎ et al.
  • PloS one‎
  • 2019‎

The ventral midbrain supports a variety of functions through the heterogeneity of neurons. Dopaminergic and GABA neurons within this region are particularly susceptible targets of amphetamine-class psychostimulants such as methamphetamine. While this has been evidenced through single-neuron methods, it remains unclear whether and to what extent the local neuronal network is affected and if so, by which mechanisms. Both GABAergic and dopaminergic neurons were heavily featured within the primary ventral midbrain network model system. Using spontaneous calcium activity, our data suggest methamphetamine decreased total network output via a D2 receptor-dependent manner. Over culture duration, functional connectivity between neurons decreased significantly but was unaffected by methamphetamine. However, across culture duration, exposure to methamphetamine significantly altered changes in network assortativity. Here we have established primary ventral midbrain networks culture as a viable model system that reveals specific changes in network activity, connectivity, and topology modulation by methamphetamine. This network culture system enables control over the type and number of neurons that comprise a network and facilitates detection of emergent properties that arise from the specific organization. Thus, the multidimensional properties of methamphetamine can be unraveled, leading to a better understanding of its impact on the local network structure and function.


Experience-Dependent Effects of Muscimol-Induced Hippocampal Excitation on Mnemonic Discrimination.

  • Sarah A Johnson‎ et al.
  • Frontiers in systems neuroscience‎
  • 2018‎

Memory requires similar episodes with overlapping features to be represented distinctly, a process that is disrupted in many clinical conditions as well as normal aging. Data from humans have linked this ability to activity in hippocampal CA3 and dentate gyrus (DG). While animal models have shown the perirhinal cortex is critical for disambiguating similar stimuli, hippocampal activity has not been causally linked to discrimination abilities. The goal of the current study was to determine how disrupting CA3/DG activity would impact performance on a rodent mnemonic discrimination task. Rats were surgically implanted with bilateral guide cannulae targeting dorsal CA3/DG. In Experiment 1, the effect of intra-hippocampal muscimol on target-lure discrimination was assessed within subjects in randomized blocks. Muscimol initially impaired discrimination across all levels of target-lure similarity, but performance improved on subsequent test blocks irrespective of stimulus similarity and infusion condition. To clarify these results, Experiment 2 examined whether prior experience with objects influenced the effect of muscimol on target-lure discrimination. Rats that received vehicle infusions in a first test block, followed by muscimol in a second block, did not show discrimination impairments for target-lure pairs of any similarity. In contrast, rats that received muscimol infusions in the first test block were impaired across all levels of target-lure similarity. Following discrimination tests, rats from Experiment 2 were trained on a spatial alternation task. Muscimol infusions increased the number of spatial errors made, relative to vehicle infusions, confirming that muscimol remained effective in disrupting behavioral performance. At the conclusion of behavioral experiments, fluorescence in situ hybridization for the immediate-early genes Arc and Homer1a was used to determine the proportion of neurons active following muscimol infusion. Contrary to expectations, muscimol increased neural activity in DG. An additional experiment was carried out to quantify neural activity in naïve rats that received an intra-hippocampal infusion of vehicle or muscimol. Results confirmed that muscimol led to DG excitation, likely through its actions on interneuron populations in hilar and molecular layers of DG and consequent disinhibition of principal cells. Taken together, our results suggest disruption of coordinated neural activity across the hippocampus impairs mnemonic discrimination when lure stimuli are novel.


Decline of prefrontal cortical-mediated executive functions but attenuated delay discounting in aged Fischer 344 × brown Norway hybrid rats.

  • Caesar M Hernandez‎ et al.
  • Neurobiology of aging‎
  • 2017‎

Despite the fact that prefrontal cortex (PFC) function declines with age, aged individuals generally show an enhanced ability to delay gratification, as evident by less discounting of delayed rewards in intertemporal choice tasks. The present study was designed to evaluate relationships between 2 aspects of PFC-dependent cognition (working memory and cognitive flexibility) and intertemporal choice in young (6 months) and aged (24 months) Fischer 344 × brown Norway F1 hybrid rats. Rats were also evaluated for motivation to earn rewards using a progressive ratio task. As previously reported, aged rats showed attenuated discounting of delayed rewards, impaired working memory, and impaired cognitive flexibility compared with young. Among aged rats, greater choice of delayed reward was associated with preserved working memory, impaired cognitive flexibility, and less motivation to work for food. These relationships suggest that age-related changes in PFC and incentive motivation contribute to variance in intertemporal choice within the aged population. Cognitive impairments mediated by PFC are unlikely, however, to fully account for the enhanced ability to delay gratification that accompanies aging.


Nonlinear Theta-Gamma Coupling between the Anterior Thalamus and Hippocampus Increases as a Function of Running Speed.

  • Yu Qin‎ et al.
  • eNeuro‎
  • 2023‎

The hippocampal theta rhythm strongly correlates to awake behavior leading to theories that it represents a cognitive state of the brain. As theta has been observed in other regions of the Papez circuit, it has been theorized that activity propagates in a reentrant manner. These observations complement the energy cascade hypothesis in which large-amplitude, slow-frequency oscillations reflect activity propagating across a large population of neurons. Higher frequency oscillations, such as gamma, are related to the speed with which inhibitory and excitatory neurons interact and distribute activity on the local level. The energy cascade hypothesis suggests that the larger anatomic loops, maintaining theta, drive the smaller loops. As hippocampal theta increases in power with running speed, so does the power and frequency of the gamma rhythm. If theta is propagated through the circuit, it stands to reason that the local field potential (LFP) recorded in other regions would be coupled to the hippocampal theta, with the coupling increasing with running speed. We explored this hypothesis using open-source simultaneous recorded data from the CA1 region of the hippocampus and the anterior dorsal and anterior ventral thalamus. Cross-regional theta coupling increased with running speed. Although the power of the gamma rhythm was lower in the anterior thalamus, there was an increase in the coupling of hippocampal theta to anterior thalamic gamma. Broadly, the data support models of how activity moves across the nervous system, suggesting that the brain uses large-scale volleys of activity to support higher cognitive processes.


Gys1 Antisense Therapy Prevents Disease-Driving Aggregates and Epileptiform Discharges in a Lafora Disease Mouse Model.

  • Katherine J Donohue‎ et al.
  • Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics‎
  • 2023‎

Patients with Lafora disease have a mutation in EPM2A or EPM2B, resulting in dysregulation of glycogen metabolism throughout the body and aberrant glycogen molecules that aggregate into Lafora bodies. Lafora bodies are particularly damaging in the brain, where the aggregation drives seizures with increasing severity and frequency, coupled with neurodegeneration. Previous work employed mouse genetic models to reduce glycogen synthesis by approximately 50%, and this strategy significantly reduced Lafora body formation and disease phenotypes. Therefore, an antisense oligonucleotide (ASO) was developed to reduce glycogen synthesis in the brain by targeting glycogen synthase 1 (Gys1). To test the distribution and efficacy of this drug, the Gys1-ASO was administered to Epm2b-/- mice via intracerebroventricular administration at 4, 7, and 10 months. The mice were then sacrificed at 13 months and their brains analyzed for Gys1 expression, glycogen aggregation, and neuronal excitability. The mice treated with Gys1-ASO exhibited decreased Gys1 protein levels, decreased glycogen aggregation, and reduced epileptiform discharges compared to untreated Epm2b-/- mice. This work provides proof of concept that a Gys1-ASO halts disease progression of EPM2B mutations of Lafora disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: