Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

  • Ahmed N Hegazy‎ et al.
  • Gastroenterology‎
  • 2017‎

Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+ T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation.


A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells.

  • Kanchan Phadwal‎ et al.
  • Autophagy‎
  • 2012‎

Autophagy is a conserved constitutive cellular process, responsible for the degradation of dysfunctional proteins and organelles. Autophagy plays a role in many diseases such as neurodegeneration and cancer; however, to date, conventional autophagy detection techniques are not suitable for clinical samples. We have developed a high throughput, statistically robust technique that quantitates autophagy in primary human leukocytes using the Image stream, an imaging flow cytometer. We validate this method on cell lines and primary cells knocked down for essential autophagy genes. Also, using this method we show that T cells have higher autophagic activity than B cells. Furthermore our results indicate that healthy primary senescent CD8(+) T cells have decreased autophagic levels correlating with increased DNA damage, which may explain features of the senescent immune system and its declining function with age. This technique will allow us, for the first time, to measure autophagy levels in diseases with a known link to autophagy, while also determining the contribution of autophagy to the efficacy of drugs.


HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC.

  • Natasha Wood‎ et al.
  • PLoS pathogens‎
  • 2009‎

The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections.


The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated.

  • Sabelle Jallow‎ et al.
  • European journal of immunology‎
  • 2015‎

Both the recognition of HIV-infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV-2 gag-specific T-cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165 DRFYKSLRA173 , within the highly conserved Major Homology Region of gag-p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag-p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag-specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165 DRFYKSLRA173 epitope. Our data demonstrate that the 165 DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral-load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV-2 encoding the "PPP-gag" sequence and both strong gag-specific CTL responses as well as lower viral load.


A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T Cells From Multiple Types of Cancer.

  • Xi Li‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Background: Cancer patients often display dysfunctional antitumor T-cell responses. Because noteworthy benefits of immune checkpoint pathway blockade, such as programmed cell death protein 1 (PD-1) inhibitors, have been achieved in multiple advanced cancers, the next critical question is which mono-blockade or combinatorial blockade regimens may reinvigorate antitumor T-cell immunity in those cancer patients while limiting immune-related adverse effects. Method: This study recruited, in total, 172 primary cancer patients (131 were blood-tumor-matched patients) who were treatment-naïve prior to the surgeries or biopsies covering the eight most prevalent types of cancer. With access to fresh surgical samples, this study simultaneously investigated the ex vivo expression level of eight known immune checkpoint receptors [PD-1, cytotoxic T-lymphocyte antigen-4 [CTLA-4], T-cell immunoglobulin and mucin-domain containing-3 [Tim-3], 2B4, killer cell lectin like receptor G1 [KLRG-1], TIGIT, B- and T-lymphocyte attenuator [BTLA], and CD160] on tumor-infiltrating T cells (TILs) and paired circulating T cells in blood from a 131-patient cohort. Results: We found increased an expression of PD-1 and Tim-3 but a decreased expression of BTLA on TILs when compared with peripheral blood from multiple types of cancer. Moreover, our co-expression analysis of key immune checkpoint receptors delineates "shared" subsets as PD-1+Tim-3+TIGIT+2B4+KLRG-1-CTLA-4- and PD-1+TIGIT+2B4+Tim-3-KLRG-1-CTLA-4- from bulk CD8 TILs. Furthermore, we found that a higher frequency of advanced differentiation stage T cells (CD27-CCR7-CD45RA-) among the "shared" subset (PD-1+Tim-3+TIGIT+2B4+KLRG-1-CTLA-4-) in bulk CD8 TILs was associated with poorly differentiated cancer type in cervical cancer patients. Conclusions: To our knowledge, our study is the first comprehensive analysis of key immune checkpoint receptors on T cells in treatment-naïve, primary cancer patients from the eight most prevalent types of cancer. These findings might provide useful information for future design of mono-blockade/combinatorial blockades and/or genetically modified T-cell immunotherapy.


Identification of novel HIV-1-derived HLA-E-binding peptides.

  • Zara Hannoun‎ et al.
  • Immunology letters‎
  • 2018‎

Non-classical class Ib MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.


APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete "all or nothing" phenomenon.

  • Andrew E Armitage‎ et al.
  • PLoS genetics‎
  • 2012‎

The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host-pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete "all or nothing" phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host.


Boosted Influenza-Specific T Cell Responses after H5N1 Pandemic Live Attenuated Influenza Virus Vaccination.

  • YanChun Peng‎ et al.
  • Frontiers in immunology‎
  • 2015‎

In a phase I clinical trial, a H5N1 pandemic live attenuated influenza virus (pLAIV) VN2004 vaccine bearing avian influenza H5N1 hemagglutinin (HA) and NA genes on the A/Ann Arbor cold-adapted vaccine backbone displayed very restricted replication. We evaluated T cell responses to H5N1 pLAIV vaccination and assessed pre-existing T cell responses to determine whether they were associated with restricted replication of the H5N1 pLAIV.


Interferon-induced transmembrane protein-3 rs12252-C is associated with rapid progression of acute HIV-1 infection in Chinese MSM cohort.

  • Yonghong Zhang‎ et al.
  • AIDS (London, England)‎
  • 2015‎

The interferon-inducible transmembrane protein-3 (IFITM3) is a protein that restricts multiple pathogenic viruses such as influenza virus. The single-nucleotide polymorphism rs12252-C, which is rare in Caucasian populations, but much more common in the Han Chinese population, has been found in much higher homozygous frequency in patients with severe acute influenza. Until now, there has been no study on the effect of this genetic variant on the clinical control of other viral infections.


Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome.

  • Hongshuo Song‎ et al.
  • Retrovirology‎
  • 2012‎

A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method.


Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses.

  • Gemma Hancock‎ et al.
  • PLoS pathogens‎
  • 2015‎

Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called "beneficial" regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control.


Enriched HLA-E and CD94/NKG2A Interaction Limits Antitumor CD8+ Tumor-Infiltrating T Lymphocyte Responses.

  • Megat Abd Hamid‎ et al.
  • Cancer immunology research‎
  • 2019‎

Immunotherapy treatments with anti-PD-1 boost recovery in less than 30% of treated cancer patients, indicating the complexity of the tumor microenvironment. Expression of HLA-E is linked to poor clinical outcomes in mice and human patients. However, the contributions to immune evasion of HLA-E, a ligand for the inhibitory CD94/NKG2A receptor, when expressed on tumors, compared with adjacent tissue and peripheral blood mononuclear cells, remains unclear. In this study, we report that epithelial-derived cancer cells, tumor macrophages, and CD141+ conventional dendritic cells (cDC) contributed to HLA-E enrichment in carcinomas. Different cancer types showed a similar pattern of enrichment. Enrichment correlated to NKG2A upregulation on CD8+ tumor-infiltrating T lymphocytes (TIL) but not on CD4+ TILs. CD94/NKG2A is exclusively expressed on PD-1high TILs while lacking intratumoral CD103 expression. We also found that the presence of CD94/NKG2A on human tumor-specific T cells impairs IL2 receptor-dependent proliferation, which affects IFNγ-mediated responses and antitumor cytotoxicity. These functionalities recover following antibody-mediated blockade in vitro and ex vivo Our results suggest that enriched HLA-E:CD94/NKG2A inhibitory interaction can impair survival of PD-1high TILs in the tumor microenvironment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: