Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Genomic alterations at the basis of treatment resistance in metastatic breast cancer: clinical applications.

  • Angela Toss‎ et al.
  • Oncotarget‎
  • 2018‎

The standard of care for breast cancer has gradually evolved from empirical treatments based on clinical-pathological characteristics to the use of targeted approaches based on the molecular profile of the tumor. Consequently, an increasing number of molecularly targeted drugs have been developed. These drugs target specific alterations, called driver mutations, which confer a survival advantage to cancer cells. To date, the main challenge remains the identification of predictive biomarkers for the selection of the optimal treatment. On this basis, we evaluated a panel of 25 genes involved in the mechanisms of targeted treatment resistance, in 16 primary breast cancers and their matched recurrences, developed during treatment. Overall, we found a detection rate of mutations higher than that described in the literature. In particular, the most frequently mutated genes were ERBB2 and those involved in the PI3K/AKT/mTOR and the MAPK signaling pathways. The study revealed substantial discordances between primary tumors and metastases, stressing the need for analysis of metastatic tissues at recurrence. We observed that 85.7% of patients with an early-stage or locally advanced primary tumor showed at least one mutation in the primary tumor. This finding could explain the subsequent relapse and might therefore justify more targeted adjuvant treatments. Finally, the mutations detected in 50% of relapsed tissues could have guided subsequent treatment choices in a different way. This study demonstrates that mutation events may be present at diagnosis or arise during cancer treatment. As a result, profiling primary and metastatic tumor tissues may be a major step in defining optimal treatments.


Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA.

  • Young Kwang Chae‎ et al.
  • Oncotarget‎
  • 2016‎

Genomic analysis of tumor tissue is the standard technique for identifying DNA alterations in malignancies. Genomic analysis of circulating tumor cell-free DNA (cfDNA) represents a relatively non-invasive method of assessing genomic alterations using peripheral blood. We compared the concordance of genomic alterations between cfDNA and tissue biopsies in this retrospective study. Twenty-eight patients with advanced solid tumors with paired next-generation sequencing tissue and cfDNA biopsies were identified. Sixty-five genes were common to both assays. Concordance was defined as the presence or absence of the identical genomic alteration(s) in a single gene on both molecular platforms. Including all aberrations, the average number of alterations per patient for tissue and cfDNA analysis was 4.82 and 2.96, respectively. When eliminating alterations not detectable in the cfDNA assay, mean number of alterations for tissue and cfDNA was 3.21 and 2.96, respectively. Overall, concordance was 91.9-93.9%. However, the concordance rate decreased to 11.8-17.1% when considering only genes with reported genomic alterations in either assay. Over 50% of mutations detected in either technique were not detected using the other biopsy technique, indicating a potential complementary role of each assay. Across 5 genes (TP53, EGFR, KRAS, APC, CDKN2A), sensitivity and specificity were 59.1% and 94.8%, respectively. Potential explanations for the lack of concordance include differences in assay platform, spatial and temporal factors, tumor heterogeneity, interval treatment, subclones, and potential germline DNA contamination. These results highlight the importance of prospective studies to evaluate concordance of genomic findings between distinct platforms that ultimately may inform treatment decisions.


Toxicity profile of approved anti-PD-1 monoclonal antibodies in solid tumors: a systematic review and meta-analysis of randomized clinical trials.

  • Ricardo Costa‎ et al.
  • Oncotarget‎
  • 2017‎

Nivolumab and pembrolizumab are antibodies against the programmed-death-receptor- 1 (PD-1) which are associated with distinct immune related adverse effects (AEs). This meta-analysis of randomized clinical trials aims to summarize current knowledge regarding the toxicity profile of these agents.


A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer.

  • Cesar August Santa-Maria‎ et al.
  • Oncotarget‎
  • 2018‎

Immune checkpoint inhibitors produce modest responses in metastatic breast cancer, however, combination approaches may improve responses. A single arm pilot study was designed to determine the overall response rate (ORR) of durvalumab and tremelimumab, and evaluate immunogenomic dynamics in metastatic endocrine receptor (ER) positive or triple negative breast cancer (TNBC). Simon two-stage design indicated at least four responses from the first 18 patients were needed to proceed with the second stage. T-cell receptor (TCR) sequencing and immune-gene expression profiling were conducted at baseline and two months, whole exome sequencing was conducted at baseline. Eighteen evaluable patients were accrued (11 ER-positive; seven TNBC). Only three patients had a response (ORR = 17%), thus the study did not proceed to the second stage. Responses were only observed in patients with TNBC (ORR = 43%). Responders versus non-responders had upregulation of CD8, granzyme A, and perforin 1 gene expression, and higher mutational and neoantigen burden. Patients with TNBC had an oligoclonal shift of the most abundant TCR-beta clonotypes compared to those with ER-positive disease, p = 0.004. We conclude responses are low in unselected metastatic breast cancer, however, higher rates of clinical benefit were observed in TNBC. Immunogenomic dynamics may help identify phenotypes most likely to respond to immunotherapy.


Circulating tumor cells (CTCs) are associated with abnormalities in peripheral blood dendritic cells in patients with inflammatory breast cancer.

  • Michal Mego‎ et al.
  • Oncotarget‎
  • 2017‎

CTCs are involved in tumor dissemination and are an independent prognostic factor in primary and metastatic breast cancer patients. Dendritic cells (DCs) are the most efficient antigen presenting cells and are comprised of plasmacytoid-(pDC) and myeloid-(mDC) derived DC subsets. This study aimed to correlate CTC counts with the peripheral blood DC immunophenotypes and functions of inflammatory breast cancer (IBC) patients. This study included 65 IBC patients. Peripheral blood (PB) was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch® and DC phenotype and function by flow cytometry; the characteristics of DCs were then correlated with CTC counts and clinical outcome. Twenty-one (32.3%) patients with CTCs ≥5 had a significantly inferior overall survival (OS) compared to patients with <5 CTCs (p=0.045). In addition, patients with ≥5 CTCs had a lower percentage of mDCs capable of producing TNF-α before or after activation through the toll-like receptor (TLR), as well as a lower percentage of mDCs producing IL-12 after TLR-activation. There was a positive correlation between CTCs counts and expression of the activation (CCR7) and costimulatory (CD86) receptors on TLR-activated mDCs and pDCs, respectively. Moreover, presence of high percentage of mDC capable to produce increased levels of TNF-α was independently associated with inferior OS (p = 0.0006). An increase in the percentage of mDC producing TNF-α might induce a pro-inflammatory environment that could play a role in determining the poor clinical outcome in IBC patients and could add further prognostic value to CTCs.


Analysis of tumor template from multiple compartments in a blood sample provides complementary access to peripheral tumor biomarkers.

  • William M Strauss‎ et al.
  • Oncotarget‎
  • 2016‎

Targeted cancer therapeutics are promised to have a major impact on cancer treatment and survival. Successful application of these novel treatments requires a molecular definition of a patient's disease typically achieved through the use of tissue biopsies. Alternatively, allowing longitudinal monitoring, biomarkers derived from blood, isolated either from circulating tumor cell derived DNA (ctcDNA) or circulating cell-free tumor DNA (ccfDNA) may be evaluated. In order to use blood derived templates for mutational profiling in clinical decisions, it is essential to understand the different template qualities and how they compare to biopsy derived template DNA as both blood-based templates are rare and distinct from the gold-standard. Using a next generation re-sequencing strategy, concordance of the mutational spectrum was evaluated in 32 patient-matched ctcDNA and ccfDNA templates with comparison to tissue biopsy derived DNA template. Different CTC antibody capture systems for DNA isolation from patient blood samples were also compared. Significant overlap was observed between ctcDNA, ccfDNA and tissue derived templates. Interestingly, if the results of ctcDNA and ccfDNA template sequencing were combined, productive samples showed similar detection frequency (56% vs 58%), were temporally flexible, and were complementary both to each other and the gold standard. These observations justify the use of a multiple template approach to the liquid biopsy, where germline, ctcDNA, and ccfDNA templates are employed for clinical diagnostic purposes and open a path to comprehensive blood derived biomarker access.


Developmental therapeutics for inflammatory breast cancer: Biology and translational directions.

  • Ricardo Costa‎ et al.
  • Oncotarget‎
  • 2017‎

Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.


Antineoplastic effects of selective CDK9 inhibition with atuveciclib on cancer stem-like cells in triple-negative breast cancer.

  • Daphne Brisard‎ et al.
  • Oncotarget‎
  • 2018‎

Treatment options for triple-negative breast cancer (TNBC) are limited due to the lack of efficient targeted therapies, frequently resulting in recurrence and metastatic disease. Accumulating evidence suggests that a small population of cancer stem-like cells (CSLCs) is responsible for tumor recurrence and therapy resistance. Here we investigated the role of cyclin-dependent kinase 9 (CDK9) in TNBC. Using The Cancer Genome Atlas (TCGA) data we found high-CDK9 expression correlates with worse overall survival in TNBC patients. Pharmacologic inhibition of CDK9 with atuveciclib in high-CDK9 expressing TNBC cell lines reduced expression of CDK9 targets MYC and MCL1 and decreased cell proliferation and survival. Importantly, atuveciclib inhibited the growth of mammospheres and reduced the percentage of CD24low/CD44high cells, indicating disruption of breast CSLCs (BCSLCs). Furthermore, atuveciclib impaired 3D invasion of tumorspheres suggesting inhibition of both invasion and metastatic potential. Finally, atuveciclib enhanced the antineoplastic effects of Cisplatin and promoted inhibitory effects on BCSLCs grown as mammospheres. Together, these findings suggest CDK9 as a potential therapeutic target in aggressive forms of CDK9-high TNBC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: