Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling.

  • Jianguo Wu‎ et al.
  • eLife‎
  • 2016‎

Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling.


Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

  • Susana Lechuga‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis.


Coronin 1C negatively regulates cell-matrix adhesion and motility of intestinal epithelial cells.

  • Stanislav N Samarin‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

Coronins, WD-repeat actin-binding proteins, are known to regulate cell motility by coordinating actin filament turnover in lamellipodia of migrating cell. Here we report a novel mechanism of Coronin 1C-mediated cell motility that involves regulation of cell-matrix adhesion. RNAi silencing of Coronin 1C in intestinal epithelial cells enhanced cell migration and modulated lamellipodia dynamics by increasing the persistence of lamellipodial protrusion. Coronin 1C-depleted cells showed increased cell-matrix adhesions and enhanced cell spreading compared to control cells, while over-expression of Coronin 1C antagonized cell adhesion and spreading. Enhanced cell-matrix adhesion of coronin-deficient cells correlated with hyperphosphorylation of focal adhesion kinase (FAK) and paxillin, and an increase in number of focal adhesions and their redistribution at the cell periphery. siRNA depletion of FAK in coronin-deficient cells rescued the effects of Coronin 1C depletion on motility, cell-matrix adhesion, and spreading. Thus, our findings provide the first evidence that Coronin 1C negatively regulates epithelial cell migration via FAK-mediated inhibition of cell-matrix adhesion.


Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium.

  • Andrei I Ivanov‎ et al.
  • The American journal of pathology‎
  • 2010‎

Formation of the epithelial barrier and apico-basal cell polarity represent two characteristics and mutually dependent features of differentiated epithelial monolayers. They are controlled by special adhesive structures, tight junctions (TJs), and polarity protein complexes that define the apical and the basolateral plasma membrane. The functional interplay between TJs and polarity complexes remains poorly understood. We investigated the role of Scribble, a basolateral polarity protein and known tumor suppressor, in regulating TJs in human intestinal epithelium. Scribble was enriched at TJs in T84 and SK-CO15 intestinal epithelial cell monolayers and sections of normal human colonic mucosa. siRNA-mediated knockdown of Scribble in SK-CO15 cells attenuated development of epithelial barrier and inhibited TJ reassembly independently of other basolateral polarity proteins Lgl-1 and Dlg-1. Scribble selectively co-imunoprecipitated with TJ protein ZO-1, and ZO-1 was important for Scribble recruitment to intercellular junctions and TJ reassembly. Lastly, Scribble was mislocalized from TJs and its expression down-regulated in interferon-gamma-treated T84 cell monolayers and inflamed human intestinal mucosa in vivo. We conclude that Scribble is an important regulator of TJ functions and plasticity in the intestinal epithelium. Down-regulation of Scribble may mediate mucosal barrier breakdown during intestinal inflammation.


Non-muscle myosin IIA differentially regulates intestinal epithelial cell restitution and matrix invasion.

  • Brian A Babbin‎ et al.
  • The American journal of pathology‎
  • 2009‎

Epithelial cell motility is critical for self-rejuvenation of normal intestinal mucosa, wound repair, and cancer metastasis. This process is regulated by the reorganization of the F-actin cytoskeleton, which is driven by a myosin II motor. However, the role of myosin II in regulating epithelial cell migration remains poorly understood. This study addressed the role of non-muscle myosin (NM) IIA in two different modes of epithelial cell migration: two-dimensional (2-D) migration that occurs during wound closure and three-dimensional (3-D) migration through a Matrigel matrix that occurs during cancer metastasis. Pharmacological inhibition or siRNA-mediated knockdown of NM IIA in SK-CO15 human colonic epithelial cells resulted in decreased 2-D migration and increased 3-D invasion. The attenuated 2-D migration was associated with increased cell adhesiveness to collagen and laminin and enhanced expression of beta1-integrin and paxillin. On the 2-D surface, NM IIA-deficient SK-CO15 cells failed to assemble focal adhesions and F-actin stress fibers. In contrast, the enhanced invasion of NM IIA-depleted cells was dependent on Raf-ERK1/2 signaling pathway activation, enhanced calpain activity, and increased calpain-2 expression. Our findings suggest that NM IIA promotes 2-D epithelial cell migration but antagonizes 3-D invasion. These observations indicate multiple functions for NM IIA, which, along with the regulation of the F-actin cytoskeleton and cell-matrix adhesions, involve previously unrecognized control of intracellular signaling and protein expression.


Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility.

  • Andrei I Ivanov‎ et al.
  • BMC cell biology‎
  • 2009‎

Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled in vitro by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium.


A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions.

  • Andrei I Ivanov‎ et al.
  • PloS one‎
  • 2007‎

The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis.


Cellular and molecular bases of the initiation of fever.

  • Alexandre A Steiner‎ et al.
  • PLoS biology‎
  • 2006‎

All phases of lipopolysaccharide (LPS)-induced fever are mediated by prostaglandin (PG) E2. It is known that the second febrile phase (which starts at approximately 1.5 h post-LPS) and subsequent phases are mediated by PGE2 that originated in endotheliocytes and perivascular cells of the brain. However, the location and phenotypes of the cells that produce PGE2 triggering the first febrile phase (which starts at approximately 0.5 h) remain unknown. By studying PGE2 synthesis at the enzymatic level, we found that it was activated in the lung and liver, but not in the brain, at the onset of the first phase of LPS fever in rats. This activation involved phosphorylation of cytosolic phospholipase A2 (cPLA2) and transcriptional up-regulation of cyclooxygenase (COX)-2. The number of cells displaying COX-2 immunoreactivity surged in the lung and liver (but not in the brain) at the onset of fever, and the majority of these cells were identified as macrophages. When PGE2 synthesis in the periphery was activated, the concentration of PGE2 increased both in the venous blood (which collects PGE2 from tissues) and arterial blood (which delivers PGE2 to the brain). Most importantly, neutralization of circulating PGE2 with an anti-PGE2 antibody both delayed and attenuated LPS fever. It is concluded that fever is initiated by circulating PGE2 synthesized by macrophages of the LPS-processing organs (lung and liver) via phosphorylation of cPLA2 and transcriptional up-regulation of COX-2. Whether PGE2 produced at the level of the blood-brain barrier also contributes to the development of the first phase remains to be clarified.


A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo.

  • Susana Lechuga‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo.


GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis.

  • Nitish Rana‎ et al.
  • Cell‎
  • 2022‎

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation.

  • Dongdong Wang‎ et al.
  • Breast cancer research : BCR‎
  • 2020‎

Breast cancer metastasis is driven by a profound remodeling of the cytoskeleton that enables efficient cell migration and invasion. Anillin is a unique scaffolding protein regulating major cytoskeletal structures, such as actin filaments, microtubules, and septin polymers. It is markedly overexpressed in breast cancer, and high anillin expression is associated with poor prognosis. The aim of this study was to investigate the role of anillin in breast cancer cell migration, growth, and metastasis.


Mechanism of internalization of MDA-7/IL-24 protein and its cognate receptors following ligand-receptor docking.

  • Anjan K Pradhan‎ et al.
  • Oncotarget‎
  • 2019‎

Melanoma differentiation associated gene-7 (mda-7/IL-24) is a member of the IL-10 family of cytokines, with ubiquitous direct and "bystander" tumor-selective killing properties. MDA-7/IL-24 protein binds distinct type II cytokine heterodimeric receptor complexes, IL-20R1/IL-20R2, IL-22R1/IL-20R1 and IL-22R1/IL-20R2. Recombinant MDA-7/IL-24 protein induces endogenous mda-7/IL-24 expression in a receptor-dependent manner; since A549 cells that lack a complete set of cognate receptors are not responsive to exogenous protein. The mechanism of MDA-7/IL-24 ligand-receptor biology is not well understood. We explored the interaction of MDA-7/IL-24 with its' receptors and the consequences of ligand-receptor docking. Using both pharmacological and genetic approaches we demonstrate that MDA-7/IL-24 internalization employs the clathrin-mediated endocytic pathway leading to degradation of receptors via the lysosomal/ubiquitin proteosomal pathway. This clathrin-mediated endocytosis is dynamin-dependent. This study resolves a novel mechanism of MDA-7/IL-24 protein "bystander" function, which involves receptor/protein-mediated internalization and receptor degradation.


Microtubules regulate disassembly of epithelial apical junctions.

  • Andrei I Ivanov‎ et al.
  • BMC cell biology‎
  • 2006‎

Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion.


Adducins inhibit lung cancer cell migration through mechanisms involving regulation of cell-matrix adhesion and cadherin-11 expression.

  • Susana Lechuga‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2019‎

Cell migration is a critical mechanism controlling tissue morphogenesis, epithelial wound healing and tumor metastasis. Migrating cells depend on orchestrated remodeling of the plasma membrane and the underlying actin cytoskeleton, which is regulated by the spectrin-adducin-based membrane skeleton. Expression of adducins is altered during tumorigenesis, however, their involvement in metastatic dissemination of tumor cells remains poorly characterized. This study investigated the roles of α-adducin (ADD1) and γ-adducin (ADD3) in regulating migration and invasion of non-small cell lung cancer (NSCLC) cells. ADD1 was mislocalized, whereas ADD3 was markedly downregulated in NSCLC cells with the invasive mesenchymal phenotype. CRISPR/Cas9-mediated knockout of ADD1 and ADD3 in epithelial-type NSCLC and normal bronchial epithelial cells promoted their Boyden chamber migration and Matrigel invasion. Furthermore, overexpression of ADD1, but not ADD3, in mesenchymal-type NSCLC cells decreased cell migration and invasion. ADD1-overexpressing NSCLC cells demonstrated increased adhesion to the extracellular matrix (ECM), accompanied by enhanced assembly of focal adhesions and hyperphosphorylation of Src and paxillin. The increased adhesiveness and decreased motility of ADD1-overexpressing cells were reversed by siRNA-mediated knockdown of Src. By contrast, the accelerated migration of ADD1 and ADD3-depleted NSCLC cells was ECM adhesion-independent and was driven by the upregulated expression of pro-motile cadherin-11. Overall, our findings reveal a novel function of adducins as negative regulators of NSCLC cell migration and invasion, which could be essential for limiting lung cancer progression and metastasis.


Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis.

  • Nayden G Naydenov‎ et al.
  • Scientific reports‎
  • 2016‎

The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo.


Annexin 2 regulates intestinal epithelial cell spreading and wound closure through Rho-related signaling.

  • Brian A Babbin‎ et al.
  • The American journal of pathology‎
  • 2007‎

Epithelial cell migration is a critical event in gastrointestinal mucosal wound healing and is dependent on actin cytoskeletal reorganization. We observed increased expression of an actin regulatory protein, annexin 2, in migrating intestinal epithelial cells. Small interfering RNA (siRNA)-mediated knockdown of annexin 2 expression in Caco-2 epithelial cells resulted in significant reductions in cell spreading and wound closure associated with decreased formation of filamentous actin bundles along the base of migrating cells. Because annexin 2 has been shown to influences actin cytoskeletal remodeling through targeting signaling molecules to membrane domains, we examined the membrane association and activation status of Rho GTPases after annexin 2 knockdown. We observed Rho dissociation from membranes and decreased Rho activity following annexin 2 siRNA transfection. Inhibition of cell spreading and wound closure in annexin 2 siRNA-transfected cells was prevented by expression of constitutively active RhoA. Rho colocalized with annexin 2 in lamellipodia and along the cytoplasmic face of the plasma membrane. In addition, annexin 2 was observed to co-immunoprecipitate with endogenous Rho and constitutively active RhoA. These findings suggest that annexin 2 plays a role in targeting Rho to cellular membranes, thereby modulating Rho-related signaling events regulating cytoskeletal reorganization during epithelial cell migration.


Lymphocyte cytosolic protein 1 (L-plastin) I232F mutation impairs granulocytic proliferation and causes neutropenia.

  • Upendra Mahat‎ et al.
  • Blood advances‎
  • 2022‎

Neutrophils migrate into inflamed tissue, engage in phagocytosis, and clear pathogens or apoptotic cells. These processes require well-coordinated events involving the actin cytoskeleton. We describe a child with severe neutropenia and episodes of soft tissue infections and pneumonia. Bone marrow examination showed granulocytic hypoplasia with dysplasia. Whole-exome sequencing revealed a de novo heterozygous missense mutation in LCP1, which encodes the F-actin-binding protein Lymphocyte Cytosolic Protein 1. To determine its pathophysiological significance, we stably transduced cells with doxycycline-inducible wild-type LCP1 and LCP1 I232F lentiviral constructs. We observed dysplastic granulocytic 32D cells expressing LCP1 I232F cells. These cells showed decreased proliferation without a block in differentiation. In addition, expression of LCP1 I232F resulted in a cell cycle arrest at the G2/M phase, but it did not lead to increased levels of genes involved in apoptosis or the unfolded protein response. Both 32D and HeLa cells expressing mutant LCP1 displayed impaired cell motility and invasiveness. Flow cytometry showed increased F-actin. However, mutant LCP1-expressing 32D cells exhibited normal oxidative burst upon stimulation. Confocal imaging and subcellular fractionation revealed diffuse intracellular localization of LCP1, but only the mutant form was found in the nucleus. We conclude that LCP1 is a new gene involved in granulopoiesis, and the missense variant LCP1 I232F leads to neutropenia and granulocytic dysplasia with aberrant actin dynamics. Our work supports a model of neutropenia due to aberrant actin regulation.


A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling.

  • Lei Sun‎ et al.
  • Cells‎
  • 2019‎

Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures, filaments, and rings. The septin cytoskeleton has a number of cellular functions, including regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin, forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells. Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution is warranted while using this compound to examine the biological functions of septins in cellular systems and model organisms.


cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption.

  • Fariba Rezaee‎ et al.
  • PloS one‎
  • 2017‎

Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches.


Adducins regulate remodeling of apical junctions in human epithelial cells.

  • Nayden G Naydenov‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

Epithelial adherens junctions (AJs) and tight junctions (TJs) are dynamic structures that readily undergo disintegration and reassembly. Remodeling of the AJs and TJs depends on the orchestrated dynamics of the plasma membrane with its underlying F-actin cytoskeleton, and the membrane-cytoskeleton interface may play a key role in junctional regulation. Spectrin-adducin-ankyrin complexes link membranes to the actin cytoskeleton where adducins mediate specrtrin-actin interactions. This study elucidates roles of adducins in the remodeling of epithelial junctions in human SK-CO15 colonic and HPAF-II pancreatic epithelial cell monolayers. These cells expressed the α and γ isoforms of adducin that positively regulated each others protein level and colocalized with E-cadherin and β-catenin at mature, internalized and newly assembled AJs. Small interfering RNA-mediated down-regulation of α- or γ-adducin expression significantly attenuated calcium-dependent AJ and TJ assembly and accelerated junctional disassembly triggered by activation of protein kinase C. Two mechanisms were found to mediate the impaired AJ and TJ assembly in adducin-depleted cells. One mechanism involved diminished expression and junctional recruitment of βII-spectrin, and the other mechanism involved the decrease in the amount of cellular F-actin and impaired assembly of perijunctional actin bundles. These findings suggest novel roles for adducins in stabilization of epithelial junctions and regulation of junctional remodeling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: