Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level.

  • Jacob Ilany‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2006‎

Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes.


Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer's disease.

  • Milene Vandal‎ et al.
  • Neurobiology of aging‎
  • 2016‎

The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD.


Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells.

  • Sophie Turban‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ∼20%. Consistent with this, analysis of GU in muscle cells from α1(-/-)/α2(-/-) AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ∼35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.


Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity.

  • Fernando F Anhê‎ et al.
  • Gut‎
  • 2023‎

Bariatric surgery is an effective treatment for type 2 diabetes (T2D) that changes gut microbial composition. We determined whether the gut microbiota in humans after restrictive or malabsorptive bariatric surgery was sufficient to lower blood glucose.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: