2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions.

  • Clara Lubeseder-Martellato‎ et al.
  • EBioMedicine‎
  • 2017‎

Fluid-phase endocytosis is a homeostatic process with an unknown role in tumor initiation. The driver mutation in pancreatic ductal adenocarcinoma (PDAC) is constitutively active KRasG12D, which induces neoplastic transformation of acinar cells through acinar-to-ductal metaplasia (ADM). We have previously shown that KRasG12D-induced ADM is dependent on RAC1 and EGF receptor (EGFR) by a not fully clarified mechanism. Using three-dimensional mouse and human acinar tissue cultures and genetically engineered mouse models, we provide evidence that (i) KRasG12D leads to EGFR-dependent sustained fluid-phase endocytosis (FPE) during acinar metaplasia; (ii) variations in plasma membrane tension increase FPE and lead to ADM in vitro independently of EGFR; and (iii) that RAC1 regulates ADM formation partially through actin-dependent regulation of FPE. In addition, mice with a pancreas-specific deletion of the Neural-Wiskott-Aldrich syndrome protein (N-WASP), a regulator of F-actin, have reduced FPE and impaired ADM emphasizing the in vivo relevance of our findings. This work defines a new role of FPE as a tumor initiating mechanism.


Dishevelled limits Notch signalling through inhibition of CSL.

  • Giovanna M Collu‎ et al.
  • Development (Cambridge, England)‎
  • 2012‎

Notch and Wnt are highly conserved signalling pathways that are used repeatedly throughout animal development to generate a diverse array of cell types. However, they often have opposing effects on cell-fate decisions with each pathway promoting an alternate outcome. Commonly, a cell receiving both signals exhibits only Wnt pathway activity. This suggests that Wnt inhibits Notch activity to promote a Wnt-ON/Notch-OFF output; but what might underpin this Notch regulation is not understood. Here, we show that Wnt acts via Dishevelled to inhibit Notch signalling, and that this crosstalk regulates cell-fate specification in vivo during Xenopus development. Mechanistically, Dishevelled binds and directly inhibits CSL transcription factors downstream of Notch receptors, reducing their activity. Furthermore, our data suggest that this crosstalk mechanism is conserved between vertebrate and invertebrate homologues. Thus, we identify a dual function for Dishevelled as an inhibitor of Notch signalling and an activator of the Wnt pathway that sharpens the distinction between opposing Wnt and Notch responses, allowing for robust cell-fate decisions.


Mir34a constrains pancreatic carcinogenesis.

  • Ana Hidalgo-Sastre‎ et al.
  • Scientific reports‎
  • 2020‎

Several studies have shown that over 70 different microRNAs are aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC), affecting proliferation, apoptosis, metabolism, EMT and metastasis. The most important genetic alterations driving PDAC are a constitutive active mutation of the oncogene Kras and loss of function of the tumour suppressor Tp53 gene. Since the MicroRNA 34a (Mir34a) is a direct target of Tp53 it may critically contribute to the suppression of PDAC. Mir34a is epigenetically silenced in numerous cancers, including PDAC, where Mir34a down-regulation has been associated with poor patient prognosis. To determine whether Mir34a represents a suppressor of PDAC formation we generated an in vivo PDAC-mouse model harbouring pancreas-specific loss of Mir34a (KrasG12D; Mir34aΔ/Δ). Histological analysis of KrasG12D; Mir34aΔ/Δ mice revealed an accelerated formation of pre-neoplastic lesions and a faster PDAC development, compared to KrasG12D controls. Here we show that the accelerated phenotype is driven by an early up-regulation of the pro-inflammatory cytokines TNFA and IL6 in normal acinar cells and accompanied by the recruitment of immune cells. Our results imply that Mir34a restrains PDAC development by modulating the immune microenvironment of PDAC, thus defining Mir34a restauration as a potential therapeutic strategy for inhibition of PDAC development.


Membranous CD24 drives the epithelial phenotype of pancreatic cancer.

  • Clara Lubeseder-Martellato‎ et al.
  • Oncotarget‎
  • 2016‎

Surface CD24 has previously been described, together with CD44 and ESA, for the characterization of putative cancer stem cells in pancreatic ductal adenocarcinoma (PDAC), the most fatal of all solid tumors. CD24 has a variety of biological functions including the regulation of invasiveness and cell proliferation, depending on the tumor entity and subcellular localization. Genetically engineered mouse models (GEMM) expressing oncogenic KrasG12D recapitulate the human disease and develop PDAC. In this study we investigate the function of CD24 using GEMM of endogenous PDAC and a model of cerulein-induced acute pancreatitis. We found that (i) CD24 expression was upregulated in murine and human PDAC and during acute pancreatitis (ii) CD24 was expressed exclusively in differentiated PDAC, whereas CD24 absence was associated with undifferentiated tumors and (iii) membranous CD24 expression determines tumor subpopulations with an epithelial phenotype in grafted models. In addition, we show that CD24 protein is stabilized in response to WNT activation and that overexpression of CD24 in pancreatic cancer cells upregulated β-catenin expression augmenting an epithelial, non-metastatic signature. Our results support a positive feedback model according to which (i) WNT activation and subsequent β-catenin dephosphorylation stabilize CD24 protein expression, and (ii) sustained CD24 expression upregulates β-catenin expression. Eventually, membranous CD24 augments the epithelial phenotype of pancreatic tumors. Thus we link the WNT/β-catenin pathway with the regulation of CD24 in the context of PDAC differentiation.


Inhibition of Wnt signalling by Notch via two distinct mechanisms.

  • Ahmet Acar‎ et al.
  • Scientific reports‎
  • 2021‎

Notch and Wnt are two essential signalling pathways that help to shape animals during development and to sustain adult tissue homeostasis. Although they are often active at the same time within a tissue, they typically have opposing effects on cell fate decisions. In fact, crosstalk between the two pathways is important in generating the great diversity of cell types that we find in metazoans. Several different mechanisms have been proposed that allow Notch to limit Wnt signalling, driving a Notch-ON/Wnt-OFF state. Here we explore these different mechanisms in human cells and demonstrate two distinct mechanisms by which Notch itself, can limit the transcriptional activity of β-catenin. At the membrane, independently of DSL ligands, Notch1 can antagonise β-catenin activity through an endocytic mechanism that requires its interaction with Deltex and sequesters β-catenin into the membrane fraction. Within the nucleus, the intracellular domain of Notch1 can also limit β-catenin induced transcription through the formation of a complex that requires its interaction with RBPjκ. We believe these mechanisms contribute to the robustness of cell-fate decisions by sharpening the distinction between opposing Notch/Wnt responses.


MEK Inhibition Targets Cancer Stem Cells and Impedes Migration of Pancreatic Cancer Cells In Vitro and In Vivo.

  • Karolin Walter‎ et al.
  • Stem cells international‎
  • 2019‎

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a very poor prognosis. At the same time, its incidence is on the rise, and PDAC is expected to become the second leading cause of cancer-related death by 2030. Despite extensive work on new therapeutic approaches, the median overall survival is only 6-12 months after diagnosis and the 5-year survival is less than 7%. While pancreatic cancer is particularly difficult to treat, patients usually succumb not to the growth of the primary tumor, but to extensive metastasis; therefore, strategies to reduce the migratory and metastatic capacity of pancreatic cancer cells merit close attention. The vast majority of pancreatic cancers harbor RAS mutations. The outstanding relevance of the RAS/MEK/ERK pathway in pancreatic cancer biology has been extensively shown previously. Due to their high dependency on Ras mutations, pancreatic cancers might be particularly sensitive to inhibitors acting downstream of Ras. Herein, we use a genetically engineered mouse model of pancreatic cancer and primary pancreatic cancer cells were derived from this model to demonstrate that small-molecule MEK inhibitors functionally abrogate cancer stem cell populations as demonstrated by reduced sphere and organoid formation capacity. Furthermore, we demonstrate that MEK inhibition suppresses TGFβ-induced epithelial-to-mesenchymal transition and migration in vitro and ultimately results in a highly significant reduction in circulating tumor cells in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: