Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells.

  • Maria Gomes Fernandes‎ et al.
  • Stem cell reports‎
  • 2016‎

Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation.


Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination.

  • Lai Man Natalie Wu‎ et al.
  • Nature neuroscience‎
  • 2016‎

The mechanisms that coordinate and balance a complex network of opposing regulators to control Schwann cell (SC) differentiation remain elusive. Here we demonstrate that zinc-finger E-box-binding homeobox 2 (Zeb2, also called Sip1) transcription factor is a critical intrinsic timer that controls the onset of SC differentiation by recruiting histone deacetylases HDAC 1 and 2 (HDAC1/2) and nucleosome remodeling and deacetylase complex (NuRD) co-repressor complexes in mice. Zeb2 deletion arrests SCs at an undifferentiated state during peripheral nerve development and inhibits remyelination after injury. Zeb2 antagonizes inhibitory effectors including Notch and Sox2. Importantly, genome-wide transcriptome analysis reveals a Zeb2 target gene encoding the Notch effector Hey2 as a potent inhibitor for Schwann cell differentiation. Strikingly, a genetic Zeb2 variant associated with Mowat-Wilson syndrome disrupts the interaction with HDAC1/2-NuRD and abolishes Zeb2 activity for SC differentiation. Therefore, Zeb2 controls SC maturation by recruiting HDAC1/2-NuRD complexes and inhibiting a Notch-Hey2 signaling axis, pointing to the critical role of HDAC1/2-NuRD activity in peripheral neuropathies caused by ZEB2 mutations.


Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis.

  • Annelies Nonneman‎ et al.
  • Neurobiology of disease‎
  • 2018‎

Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1G93A mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1G93A mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1G93A mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.


Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TCF1.

  • Francesco Aulicino‎ et al.
  • Stem cell reports‎
  • 2014‎

Cyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs) into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/β-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/β-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the "Wnt-off" state can be considered an early reprogramming marker.


BMP-SMAD1/5 Signaling Regulates Retinal Vascular Development.

  • Andreas Benn‎ et al.
  • Biomolecules‎
  • 2020‎

Vascular development is an orchestrated process of vessel formation from pre-existing vessels via sprouting and intussusceptive angiogenesis as well as vascular remodeling to generate the mature vasculature. Bone morphogenetic protein (BMP) signaling via intracellular SMAD1 and SMAD5 effectors regulates sprouting angiogenesis in the early mouse embryo, but its role in other processes of vascular development and in other vascular beds remains incompletely understood. Here, we investigate the function of SMAD1/5 during early postnatal retinal vascular development using inducible, endothelium-specific deletion of Smad1 and Smad5. We observe the formation of arterial-venous malformations in areas with high blood flow, and fewer and less functional tip cells at the angiogenic front. The vascular plexus region is remarkably hyperdense and this is associated with reduced vessel regression and aberrant vascular loop formation. Taken together, our results highlight important functions of SMAD1/5 during vessel formation and remodeling in the early postnatal retina.


Controlled ploidy reduction of pluripotent 4n cells generates 2n cells during mouse embryo development.

  • João Frade‎ et al.
  • Science advances‎
  • 2019‎

Cells with high ploidy content are common in mammalian extraembryonic and adult tissues. Cell-to-cell fusion generates polyploid cells during mammalian development and tissue regeneration. However, whether increased ploidy can be occasionally tolerated in embryonic lineages still remains largely unknown. Here, we show that pluripotent, fusion-derived tetraploid cells, when injected in a recipient mouse blastocyst, can generate diploid cells upon ploidy reduction. The generated diploid cells form part of the adult tissues in mouse chimeras. Parental chromosomes in pluripotent tetraploid cells are segregated through tripolar mitosis both randomly and nonrandomly and without aneuploidy. Tetraploid-derived diploid cells show a differentiated phenotype. Overall, we discovered an unexpected process of controlled genome reduction in pluripotent tetraploid cells. This mechanism can ultimately generate diploid cells during mouse embryo development and should also be considered for cell fusion-mediated tissue regeneration approaches.


Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10.

  • Kristien Verhoeven‎ et al.
  • American journal of human genetics‎
  • 2003‎

Slowed nerve-conduction velocities (NCVs) are a biological endophenotype in the majority of the hereditary motor and sensory neuropathies (HMSN). Here, we identified a family with autosomal dominant segregation of slowed NCVs without the clinical phenotype of HMSN. Peripheral-nerve biopsy showed predominantly thinly myelinated axons. We identified a locus at 8p23 and a Thr109Ile mutation in ARHGEF10, encoding a guanine-nucleotide exchange factor (GEF) for the Rho family of GTPase proteins (RhoGTPases). Rho GEFs are implicated in neural morphogenesis and connectivity and regulate the activity of small RhoGTPases by catalyzing the exchange of bound GDP by GTP. Expression analysis of ARHGEF10, by use of its mouse orthologue Gef10, showed that it is highly expressed in the peripheral nervous system. Our data support a role for ARHGEF10 in developmental myelination of peripheral nerves.


PDGFRα+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors.

  • Antonio Lo Nigro‎ et al.
  • Stem cell reports‎
  • 2017‎

In early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive). In vitro, these subpopulations differ in their self-renewal and differentiation capability, transcriptional and epigenetic states. In vivo, double-positive cells contributed to epiblast and PrE, while PrE-primed cells exclusively contributed to PrE derivatives. The transcriptome of PDGFRα+ subpopulations differs from previously described subpopulations and shows similarities with early/mid blastocyst cells. The heterogeneity did not depend on PDGFRα but on leukemia inhibitory factor and fibroblast growth factor signaling and DNA methylation. Thus, PDGFRα+ cells represent the in vitro counterpart of in vivo PrE precursors, and their selection from cultured mESCs yields pure PrE precursors.


Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid.

  • Paul P Van Veldhoven‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and β-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid β-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.


Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis during long bone growth.

  • Annemarie Lang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Skeletal development depends on coordinated angiogenesis and osteogenesis. Bone morphogenetic proteins direct bone development by activating SMAD1/5 signaling in osteoblasts. However, the role of SMAD1/5 in skeletal endothelium is unknown. Here, we found that endothelial cell-conditional SMAD1/5 depletion in juvenile mice caused metaphyseal and diaphyseal hypervascularity, resulting in altered cancellous and cortical bone formation. SMAD1/5 depletion induced excessive sprouting, disrupting the columnar structure of the metaphyseal vessels and impaired anastomotic loop morphogenesis at the chondro-osseous junction. Endothelial SMAD1/5 depletion impaired growth plate resorption and, upon long term depletion, abrogated osteoprogenitor recruitment to the primary spongiosa. Finally, in the diaphysis, endothelial SMAD1/5 activity was necessary to maintain the sinusoidal phenotype, with SMAD1/5 depletion inducing formation of large vascular loops, featuring elevated endomucin expression, ectopic tip cell formation, and hyperpermeability. Together, endothelial SMAD1/5 activity sustains skeletal vascular morphogenesis and function and coordinates growth plate remodeling and osteoprogenitor recruitment dynamics during bone growth.


Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction.

  • Dick W Zijlmans‎ et al.
  • Nature cell biology‎
  • 2022‎

Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates.


Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus.

  • Anchel De Jaime-Soguero‎ et al.
  • PLoS genetics‎
  • 2017‎

Understanding the mechanisms regulating cell cycle, proliferation and potency of pluripotent stem cells guarantees their safe use in the clinic. Embryonic stem cells (ESCs) present a fast cell cycle with a short G1 phase. This is due to the lack of expression of cell cycle inhibitors, which ultimately determines naïve pluripotency by holding back differentiation. The canonical Wnt/β-catenin pathway controls mESC pluripotency via the Wnt-effector Tcf3. However, if the activity of the Wnt/β-catenin controls the cell cycle of mESCs remains unknown. Here we show that the Wnt-effector Tcf1 is recruited to and triggers transcription of the Ink4/Arf tumor suppressor locus. Thereby, the activation of the Wnt pathway, a known mitogenic pathway in somatic tissues, restores G1 phase and drastically reduces proliferation of mESCs without perturbing pluripotency. Tcf1, but not Tcf3, is recruited to a palindromic motif enriched in the promoter of cell cycle repressor genes, such as p15Ink4b, p16Ink4a and p19Arf, which mediate the Wnt-dependent anti-proliferative effect in mESCs. Consistently, ablation of β-catenin or Tcf1 expression impairs Wnt-dependent cell cycle regulation. All together, here we showed that Wnt signaling controls mESC pluripotency and proliferation through non-overlapping functions of distinct Tcf factors.


Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades.

  • Iván M Moya‎ et al.
  • Developmental cell‎
  • 2012‎

Gradients of vascular endothelial growth factor (VEGF) induce single endothelial cells to become leading tip cells of emerging angiogenic sprouts. Tip cells then suppress tip-cell features in adjacent stalk cells via Dll4/Notch-mediated lateral inhibition. We report here that Smad1/Smad5-mediated BMP signaling synergizes with Notch signaling during selection of tip and stalk cells. Endothelium-specific inactivation of Smad1/Smad5 in mouse embryos results in impaired Dll4/Notch signaling and increased numbers of tip-cell-like cells at the expense of stalk cells. Smad1/5 downregulation in cultured endothelial cells reduced the expression of several target genes of Notch and of other stalk-cell-enriched transcripts (Hes1, Hey1, Jagged1, VEGFR1, and Id1-3). Moreover, Id proteins act as competence factors for stalk cells and form complexes with Hes1, which augment Hes1 levels in the endothelium. Our findings provide in vivo evidence for a regulatory loop between BMP/TGFβ-Smad1/5 and Notch signaling that orchestrates tip- versus stalk-cell selection and vessel plasticity.


Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis.

  • Willeke de Haan‎ et al.
  • Cardiovascular research‎
  • 2022‎

Hepatic capillaries are lined with specialized liver sinusoidal endothelial cells (LSECs) which support macromolecule passage to hepatocytes and prevent fibrosis by keeping hepatic stellate cells (HSCs) quiescent. LSEC specialization is co-determined by transcription factors. The zinc-finger E-box-binding homeobox (Zeb)2 transcription factor is enriched in LSECs. Here, we aimed to elucidate the endothelium-specific role of Zeb2 during maintenance of the liver and in liver fibrosis.


Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development.

  • Cathérine Dupont‎ et al.
  • Science advances‎
  • 2023‎

The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.


Functional and topological analysis of PSENEN, the fourth subunit of the γ-secretase complex.

  • Lutgarde Serneels‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

The γ-secretase complexes are intramembrane cleaving proteases involved in the generation of the Aβ peptides in Alzheimer's disease. The complex consists of four subunits, with Presenilin harboring the catalytic site. Here, we study the role of the smallest subunit, PSENEN or Presenilin enhancer 2, encoded by the gene Psenen, in vivo and in vitro. We find a profound Notch deficiency phenotype in Psenen-/- embryos confirming the essential role of PSENEN in the γ-secretase complex. We used Psenen-/- fibroblasts to explore the structure-function of PSENEN by the scanning cysteine accessibility method. Glycine 22 and proline 27, which border the membrane domains 1 and 2 of PSENEN, are involved in complex formation and stabilization of γ-secretase. The hairpin structured hydrophobic membrane domains 1 and 2 are exposed to a water-containing cavity in the complex, while transmembrane domain 3 is not water exposed. We finally demonstrate the essential role of PSENEN for the cleavage activity of the complex. PSENEN is more than a structural component of the γ-secretase complex and might contribute to the catalytic mechanism of the enzyme.


The epicardium obscures interpretations on endothelial-to-mesenchymal transition in the mouse atrioventricular canal explant assay.

  • Nathan Criem‎ et al.
  • Scientific reports‎
  • 2018‎

Atrioventricular septal defects often result from impaired endocardial cushion development. Endothelial-to-mesenchymal transition (EndoMT) is a critical event in endocardial cushion development that initiates in the atrioventricular canal (AVC). In ex vivo EndoMT studies, mouse AVCs are flat-mounted on a collagen gel. In the explant outgrowths, the ratio of elongated spindle-like mesenchymal cells over cobblestone-shaped cells, generally considered as endothelial cells, reflects EndoMT. Using this method, several key signalling pathways have been attributed important functions during EndoMT. Using genetic lineage tracing and cell-type-specific markers, we show that monolayers of cobblestone-shaped cells are predominantly of epicardial rather than endothelial origin. Furthermore, this epicardium is competent to undergo mesenchymal transition. Contamination by epicardium is common and inherent as this tissue progressively attaches to AVC myocardium. Inhibition of TGFβ signalling, previously shown to blunt EndoMT, caused an enrichment in epicardial monolayers. The presence of epicardium thus confounds interpretations of EndoMT signalling pathways in this assay. We advocate to systematically use lineage tracers and cell-type-specific markers on stage-matched AVC explants. Furthermore, a careful reconsideration of earlier studies on EndoMT using this explant assay may identify unanticipated epicardial effects and/or the presence of epicardial-to-mesenchymal transition (EpiMT), which would alter the interpretation of results on endothelial-to-mesenchymal transition.


The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation.

  • Ramya Rajagopal‎ et al.
  • Developmental biology‎
  • 2009‎

BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, alphaA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination.


Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery.

  • Martina Balli‎ et al.
  • Stem cells international‎
  • 2019‎

Impaired wound healing and tissue regeneration have severe consequences on the patient's quality of life. Micrograft therapies are emerging as promising and affordable alternatives to improve skin regeneration by enhancing the endogenous wound repair processes. However, the molecular mechanisms underpinning the beneficial effects of the micrograft treatments remain largely unknown. In this study, we identified the active protein-1 (AP-1) member Fos-related antigen-1 (Fra-1) to play a central role in the extracellular signal-regulated kinase- (ERK-) mediated enhanced cell migratory capacity of soluble micrograft-treated mouse adult fibroblasts and in the human keratinocyte cell model. Accordingly, we show that increased micrograft-dependent in vitro cell migration and matrix metalloprotease activity is abolished upon inhibition of AP-1. Furthermore, soluble micrograft treatment leads to increased expression and posttranslational phosphorylation of Fra-1 and c-Jun, resulting in the upregulation of wound healing-associated genes mainly involved in the regulation of cell migration. Collectively, our work provides insights into the molecular mechanisms behind the cell-free micrograft treatment, which might contribute to future advances in wound repair therapies.


EGFL7 Mediates BMP9-Induced Sprouting Angiogenesis of Endothelial Cells Derived from Human Embryonic Stem Cells.

  • Anne Richter‎ et al.
  • Stem cell reports‎
  • 2019‎

Human embryonic stem cells (hESCs) are instrumental in characterizing the molecular mechanisms of human vascular development and disease. Bone morphogenetic proteins (BMPs) play a pivotal role in cardiovascular development in mice, but their importance for vascular cells derived from hESCs has not yet been fully explored. Here, we demonstrate that BMP9 promotes, via its receptor ALK1 and SMAD1/5 activation, sprouting angiogenesis of hESC-derived endothelial cells. We show that the secreted angiogenic factor epidermal growth factor-like domain 7 (EGFL7) is a downstream target of BMP9-SMAD1/5-mediated signaling, and that EGFL7 promotes expansion of endothelium via interference with NOTCH signaling, activation of ERK, and remodeling of the extracellular matrix. CRISPR/Cas9-mediated deletion of EGFL7 highlights the critical role of EGFL7 in BMP9-induced endothelial sprouting and the promotion of angiogenesis. Our study illustrates the complex role of the BMP family in orchestrating hESC vascular development and endothelial sprouting.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: