Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy.

  • Johannes R Lemke‎ et al.
  • Neurology‎
  • 2016‎

To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.


Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients.

  • Carolien G F de Kovel‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2016‎

Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation.


Clinical and genetic analysis of a family with two rare reflex epilepsies.

  • Dorothée G A Kasteleijn-Nolst Trenité‎ et al.
  • Seizure‎
  • 2015‎

To determine clinical phenotypes, evolution and genetic background of a large family with a combination of two unusual forms of reflex epilepsies.


Natural helix 9 mutants of PPARγ differently affect its transcriptional activity.

  • Marjoleine F Broekema‎ et al.
  • Molecular metabolism‎
  • 2019‎

The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line.


A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation.

  • Nasrine Bendjilali‎ et al.
  • PloS one‎
  • 2013‎

Brain arteriovenous malformations (BAVM) are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ) signaling pathway.


A genetic variant in osteoprotegerin is associated with progression of joint destruction in rheumatoid arthritis.

  • Rachel Knevel‎ et al.
  • Arthritis research & therapy‎
  • 2014‎

Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.


Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy.

  • Olga Gorlova‎ et al.
  • PLoS genetics‎
  • 2011‎

The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32×10(-12), OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 × 10(-6), OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39×10(-7), OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79×10(-61), OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57×10(-76), OR = 8.84), and in NOTCH4 with ACA P = 8.84×10(-21), OR = 0.55) and ATA (P = 1.14×10(-8), OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.


Genomic and clinical predictors of lacosamide response in refractory epilepsies.

  • Sinéad B Heavin‎ et al.
  • Epilepsia open‎
  • 2019‎

Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting.


Modifier genes in SCN1A-related epilepsy syndromes.

  • Iris M de Lange‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity.


Oral microbiota analyses of Saudi sickle cell anemics with dental caries.

  • Yousef M Alyousef‎ et al.
  • International dental journal‎
  • 2023‎

The objectives of this study were to identify the composition of oral microbiota in a cohort of patients with sickle cell anemia (SCA) and a high mean number of decayed, missing, and filled permanent teeth (DMFT) and compare it to a cohort of patients with SCA and a low number of DMFT and elucidate the effect of fetal haemoglobin levels on the oral microbiota composition.


Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy.

  • Stefan Wolking‎ et al.
  • Annals of clinical and translational neurology‎
  • 2021‎

Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance.


Polygenic burden in focal and generalized epilepsies.

  • Costin Leu‎ et al.
  • Brain : a journal of neurology‎
  • 2019‎

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.


Glycocalyx engineering with heparan sulfate mimetics attenuates Wnt activity during adipogenesis to promote glucose uptake and metabolism.

  • Greg W Trieger‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like adipose tissue become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans, is an underexplored pharmacological treatment strategy to improve glucose homeostasis in T2D patients. Here, we show a novel role for cell-surface heparan sulfate (HS) in establishing glucose uptake capacity and metabolic utilization in differentiated adipocytes. Using a combination of chemical and genetic interventions, we identified that HS modulates this metabolic phenotype by attenuating levels of Wnt signaling during adipogenesis. By engineering, the glycocalyx of pre-adipocytes with exogenous synthetic HS mimetics, we were able to enhance glucose clearance capacity after differentiation through modulation of Wnt ligand availability. These findings establish the cellular glycocalyx as a possible new target for therapeutic intervention in T2D patients by enhancing glucose clearance capacity independent of insulin secretion.


Uncovering myocardial infarction genetic signatures using GWAS exploration in Saudi and European cohorts.

  • Amein K Al-Ali‎ et al.
  • Scientific reports‎
  • 2023‎

Genome-wide association studies (GWAS) have yielded significant insights into the genetic architecture of myocardial infarction (MI), although studies in non-European populations are still lacking. Saudi Arabian cohorts offer an opportunity to discover novel genetic variants impacting disease risk due to a high rate of consanguinity. Genome-wide genotyping (GWG), imputation and GWAS followed by meta-analysis were performed based on two independent Saudi Arabian studies comprising 3950 MI patients and 2324 non-MI controls. Meta-analyses were then performed with these two Saudi MI studies and the CardioGRAMplusC4D and UK BioBank GWAS as controls. Meta-analyses of the two Saudi MI studies resulted in 17 SNPs with genome-wide significance. Meta-analyses of all 4 studies revealed 66 loci with genome-wide significance levels of p < 5 × 10-8. All of these variants, except rs2764203, have previously been reported as MI-associated loci or to have high linkage disequilibrium with known loci. One SNP association in Shisa family member 5 (SHISA5) (rs11707229) was evident at a much higher frequency in the Saudi MI populations (> 12% MAF). In conclusion, our results replicated many MI associations, whereas in Saudi-only GWAS (meta-analyses), several new loci were implicated that require future validation and functional analyses.


A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility.

  • F David Carmona‎ et al.
  • American journal of human genetics‎
  • 2015‎

We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10(-40), OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1(∗)04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10(-43)) and HLA-DQα1 47 (p = 4.02 × 10(-46)), 56, and 76 (both p = 1.84 × 10(-45)) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10(-6), OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10(-6), OR = 1.20), and REL (rs115674477, p = 1.10 × 10(-5), OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.


Common variation in ISL1 confers genetic susceptibility for human congenital heart disease.

  • Kristen N Stevens‎ et al.
  • PloS one‎
  • 2010‎

Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant-common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations.


Multicenter cohort association study of SLC2A1 single nucleotide polymorphisms and age-related macular degeneration.

  • Dominique C Baas‎ et al.
  • Molecular vision‎
  • 2012‎

Age-related macular degeneration (AMD) is a major cause of blindness in older adults and has a genetically complex background. This study examines the potential association between single nucleotide polymorphisms (SNPs) in the glucose transporter 1 (SLC2A1) gene and AMD. SLC2A1 regulates the bioavailability of glucose in the retinal pigment epithelium (RPE), which might influence oxidative stress-mediated AMD pathology.


Discovering metabolic disease gene interactions by correlated effects on cellular morphology.

  • Yang Jiao‎ et al.
  • Molecular metabolism‎
  • 2019‎

Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease-gene interactions during adipocyte differentiation.


Prospective functional classification of all possible missense variants in PPARG.

  • Amit R Majithia‎ et al.
  • Nature genetics‎
  • 2016‎

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.


Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders.

  • Dennis Lal‎ et al.
  • Genome medicine‎
  • 2020‎

Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: