Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA.

  • Mohamed Altai‎ et al.
  • Nuclear medicine and biology‎
  • 2012‎

Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule.


Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting.

  • Kristina Westerlund‎ et al.
  • Biomaterials‎
  • 2019‎

Pretargeting is a promising strategy to reach high imaging contrast in a shorter time than by targeting with directly radiolabeled monoclonal antibodies (mAbs). One of problems in pretargeting is a site-specific, reproducible and uniform conjugation of recognition tags to mAbs. To solve this issue we propose a photoconjugation to covalently couple a recognition tag to a mAb via a photoactivatable Z domain. The Z-domain, a 58-amino acid protein derived from the IgG-binding B-domain of Staphylococcus aureus protein A, has a well-characterized binding site in the Fc portion of IgG. We tested the feasibility of this approach using pretargeting based on hybridization between peptide nucleic acids (PNAs). We have used photoconjugation to couple trastuzumab with the PNA-based hybridization probe, HP1. A complementary [57Co]Co-labeled PNA hybridization probe ([57Co]Co-HP2) was used as the secondary targeting probe. In vitro studies demonstrated that trastuzumab-ZHP1 bound specifically to human epidermal growth factor receptor 2 (HER2)-expressing cells with nanomolar affinity. The binding of the secondary [57Co]Co-HP2 probe to trastuzumab-PNA-pretreated cells was in the picomolar affinity range. A two-fold increase in SKOV-3 tumor targeting was achieved when [57Co]Co-HP2 (0.7 nmol) was injected 48 h after injection of trastuzumab-ZHP1 (0.5 nmol) compared with trastuzumab-ZHP1 alone (0.8 ± 0.2 vs. 0.33 ± 0.06 %ID/g). Tumor accumulation of [57Co]Co-HP2 was significantly reduced by pre-saturation with trastuzumab or when no trastuzumab-ZHP1 was preinjected. A tumor-to-blood uptake ratio of 1.5 ± 0.3 was achieved resulting in a clear visualization of HER2-expressing xenografts as confirmed by SPECT imaging. In conclusion, the feasibility of stable site-specific coupling of a PNA-based recognition tag to trastuzumab and successful pretargeting has been demonstrated. This approach can hopefully be used for a broad range of mAbs and recognition tags.


Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors.

  • Hadis Honarvar‎ et al.
  • Theranostics‎
  • 2016‎

Affibody molecules are small (7 kDa), non-immunoglobulin scaffold proteins with a potential as targeting agents for radionuclide imaging of cancer. However, high renal re-absorption of Affibody molecules prevents their use for radionuclide therapy with residualizing radiometals. We hypothesized that the use of Affibody-based peptide nucleic acid (PNA)-mediated pretargeting would enable higher accumulation of radiometals in tumors than in kidneys. To test this hypothesis, we designed an Affibody-PNA chimera ZHER2:342-SR-HP1 containing a 15-mer HP1 PNA recognition tag and a complementary HP2 hybridization probe permitting labeling with both (125)I and (111)In. (111)In-ZHER2:342-SR-HP1 bound specifically to HER2-expressing BT474 and SKOV-3 cancer cells in vitro, with a KD of 6±2 pM for binding to SKOV-3 cells. Specific high affinity binding of the radiolabeled complementary PNA probe (111)In-/(125)I-HP2 to ZHER2:342-SR-HP1 pre-treated cells was demonstrated. (111)In-ZHER2:342-SR-HP1 demonstrated specific accumulation in SKOV-3 xenografts in BALB/C nu/nu mice and rapid clearance from blood. Pre-saturation of SKOV-3 with non-labeled anti-HER2 Affibody or the use of HER2-negative Ramos xenografts resulted in significantly lower tumor uptake of (111)In-ZHER2:342-SR-HP1. The complementary PNA probe (111)In/(125)I-HP2 accumulated in SKOV-3 xenografts when ZHER2:342-SR-HP1 was injected 4 h earlier. The tumor accumulation of (111)In/(125)I-HP2 was negligible without ZHER2:342-SR-HP1 pre-injection. The uptake of (111)In-HP2 in SKOV-3 xenografts was 19±2 %ID/g at 1 h after injection. The uptake in blood and kidneys was approximately 50- and 2-fold lower, respectively. In conclusion, we have shown that the use of Affibody-based PNA-mediated pretargeting enables specific delivery of radiometals to tumors and provides higher radiometal concentration in tumors than in kidneys.


Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis.

  • Mahsan Banijamali‎ et al.
  • Journal of extracellular vesicles‎
  • 2022‎

Small extracellular vesicles (sEVs) have in recent years evolved as a source of biomarkers for disease diagnosis and therapeutic follow up. sEV samples derived from multicellular organisms exhibit a high heterogeneous repertoire of vesicles which current methods based on ensemble measurements cannot capture. In this work we present droplet barcode sequencing for protein analysis (DBS-Pro) to profile surface proteins on individual sEVs, facilitating identification of sEV-subtypes within and between samples. The method allows for analysis of multiple proteins through use of DNA barcoded affinity reagents and sequencing as readout. High throughput single vesicle profiling is enabled through compartmentalization of individual sEVs in emulsion droplets followed by droplet barcoding through PCR. In this proof-of-concept study we demonstrate that DBS-Pro allows for analysis of single sEVs, with a mixing rate below 2%. A total of over 120,000 individual sEVs obtained from a NSCLC cell line and from malignant pleural effusion (MPE) fluid of NSCLC patients have been analyzed based on their surface proteins. We also show that the method enables single vesicle surface protein profiling and by extension characterization of sEV-subtypes, which is essential to identify the cellular origin of vesicles in heterogenous samples.


Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer.

  • Ayman Abouzayed‎ et al.
  • Pharmaceutics‎
  • 2020‎

The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of natIn-DOTA-ABD-RM26 in the presence of human serum albumin was 49 ± 5 nM. [111In]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.


Influence of macrocyclic chelators on the targeting properties of (68)Ga-labeled synthetic affibody molecules: comparison with (111)In-labeled counterparts.

  • Joanna Strand‎ et al.
  • PloS one‎
  • 2013‎

Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68)Ga (T1/2=67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with (68)Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of (68)Ga-DOTA-ZHER2:S1, (68)Ga-NOTA-ZHER2:S1 and (68)Ga-NODAGA-ZHER2:S1, as well as that of their (111)In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for (68)Ga-DOTA-ZHER2:S1 (17.9 ± 0.7%IA/g) was significantly higher than for both (68)Ga-NODAGA-ZHER2:S1 (16.13 ± 0.67%IA/g) and (68)Ga-NOTA-ZHER2:S1 (13 ± 3%IA/g) at 2 h after injection. (68)Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60 ± 10) in comparison with both (68)Ga-DOTA-ZHER2:S1 (28 ± 4) and (68)Ga-NOTA-ZHER2:S1 (42 ± 11). The tumor-to-liver ratio was also higher for (68)Ga-NODAGA-ZHER2:S1 (7 ± 2) than the DOTA and NOTA conjugates (5.5 ± 0.6 vs.3.3 ± 0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for (68)Ga than for (111)In. The results of this study demonstrate that macrocyclic chelators conjugated to the N-terminus have a substantial influence on the biodistribution of HER2-targeting Affibody molecules labeled with (68)Ga.This can be utilized to enhance the imaging contrast of PET imaging using Affibody molecules and improve the sensitivity of molecular imaging. The study demonstrated an appreciable difference of chelator influence for (68)Ga and (111)In.


Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA.

  • Vladimir Tolmachev‎ et al.
  • Contrast media & molecular imaging‎
  • 2017‎

Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody molecule was conjugated with the chelators NOTA or NODAGA and labeled with 64Cu. The tumor-targeting properties of 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 were evaluated and compared with the targeting properties of 68Ga-NODAGA-ZHER2:S1 in mice. Both 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 demonstrated specific targeting of HER2-expressing xenografts. At 2 h after injection of 64Cu-NOTA-ZHER2:S1, 64Cu-NODAGA-ZHER2:S1, and 68Ga-NODAGA-ZHER2:S1, tumor uptakes did not differ significantly. Renal uptake of 64Cu-labeled conjugates was dramatically reduced at 6 and 24 h after injection. Notably, radioactivity uptake concomitantly increased in blood, lung, liver, spleen, and intestines, which resulted in decreased tumor-to-organ ratios compared to 2 h postinjection. Organ uptake was lower for 64Cu-NODAGA-ZHER2:S1. The most probable explanation for this biodistribution pattern was the release and redistribution of renal radiometabolites. In conclusion, monoamide derivatives of NOTA and NODAGA may be suboptimal chelators for radiocopper labeling of anti-HER2 affibody molecules and, possibly, other scaffold proteins with high renal uptake.


Molecular design of radiocopper-labelled Affibody molecules.

  • Vladimir Tolmachev‎ et al.
  • Scientific reports‎
  • 2018‎

The use of long-lived positron emitters 64Cu or 61Cu for labelling of Affibody molecules may improve breast cancer patients' stratification for HER-targeted therapy. Previous animal studies have shown that the use of triaza chelators for 64Cu labelling of synthetic Affibody molecules is suboptimal. In this study, we tested a hypothesis that the use of cross-bridged chelator, CB-TE2A, in combination with Gly-Glu-Glu-Glu spacer for labelling of Affibody molecules with radiocopper would improve imaging contrast. CB-TE2A was coupled to the N-terminus of synthetic Affibody molecules extended either with a glycine (designation CB-TE2A-G-ZHER2:342) or Gly-Glu-Glu-Glu spacer (CB-TE2A-GEEE-ZHER2:342). Biodistribution and targeting properties of 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-CB-TE2A-GEEE-ZHER2:342 were compared in tumor-bearing mice with the properties of 64Cu-NODAGA-ZHER2:S1, which had the best targeting properties in the previous study. 64Cu-CB-TE2A-GEEE-ZHER2:342 provided appreciably lower uptake in normal tissues and higher tumor-to-organ ratios than 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-NODAGA-ZHER2:S1. The most pronounced was a several-fold difference in the hepatic uptake. At the optimal time point, 6 h after injection, the tumor uptake of 64Cu-CB-TE2A-GEEE-ZHER2:342 was 16 ± 6%ID/g and tumor-to-blood ratio was 181 ± 52. In conclusion, a combination of the cross-bridged CB-TE2A chelator and Gly-Glu-Glu-Glu spacer is preferable for radiocopper labelling of Affibody molecules and, possibly, other scaffold proteins having high renal re-absorption.


Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy.

  • Anzhelika Vorobyeva‎ et al.
  • Scientific reports‎
  • 2018‎

Affibody molecules are engineered scaffold proteins, which demonstrated excellent binding to selected tumor-associated molecular abnormalities in vivo and highly sensitive and specific radionuclide imaging of Her2-expressing tumors in clinics. Recently, we have shown that peptide nucleic acid (PNA)-mediated affibody-based pretargeted radionuclide therapy using beta-emitting radionuclide 177Lu extended significantly survival of mice bearing human Her2-expressing tumor xenografts. In this study, we evaluated two approaches to use positron emission tomography (PET) for stratification of patients for affibody-based pretargeting therapy. The primary targeting probe ZHER2:342-SR-HP1 and the secondary probe HP2 (both conjugated with DOTA chelator) were labeled with the positron-emitting radionuclide 68Ga. Biodistribution of both probes was measured in BALB/C nu/nu mice bearing either SKOV-3 xenografts with high Her2 expression or DU-145 xenografts with low Her2 expression. 68Ga-HP2 was evaluated in the pretargeting setting. Tumor uptake of both probes was compared with the uptake of pretargeted 177Lu-HP2. The uptake of both 68Ga-ZHER2:342-SR-HP1 and 68Ga-HP2 depended on Her2-expression level providing clear discrimination of between tumors with high and low Her2 expression. Tumor uptake of 68Ga-HP2 correlated better with the uptake of 177Lu-HP2 than the uptake of 68Ga-ZHER2:342-SR-HP1. The use of 68Ga-HP2 as a theranostics counterpart would be preferable approach for clinical translation.


Evaluation of an antibody-PNA conjugate as a clearing agent for antibody-based PNA-mediated radionuclide pretargeting.

  • Anders Myrhammar‎ et al.
  • Scientific reports‎
  • 2020‎

Radionuclide molecular imaging of cancer-specific targets is a promising method to identify patients for targeted antibody therapy. Radiolabeled full-length antibodies however suffer from slow clearance, resulting in high background radiation. To overcome this problem, a pretargeting system based on complementary peptide nucleic acid (PNA) probes has been investigated. The pretargeting relies on sequential injections of primary, PNA-tagged antibody and secondary, radiolabeled PNA probe, which are separated in time, to allow for clearance of non-bound primary agent. We now suggest to include a clearing agent (CA), designed for removal of primary tumor-targeting agent from the blood. The CA is based on the antibody cetuximab, which was conjugated to PNA and lactosaminated by reductive amination to improve hepatic clearance. The CA was evaluated in combination with PNA-labelled trastuzumab, T-ZHP1, for radionuclide HER2 pretargeting. Biodistribution studies in normal mice demonstrated that the CA cleared ca. 7 times more rapidly from blood than unmodified cetuximab. Injection of the CA 6 h post injection of the radiolabeled primary agent [131I]I-T-ZHP1 gave a moderate reduction of the radioactivity concentration in the blood after 1 h from 8.5 ± 1.8 to 6.0 ± 0.4%ID/g. These proof-of-principle results could guide future development of a more efficient CA.


Comparative Evaluation of Novel 177Lu-Labeled PNA Probes for Affibody-Mediated PNA-Based Pretargeting.

  • Hanna Tano‎ et al.
  • Cancers‎
  • 2021‎

Affibody-mediated PNA-based pretargeting is a promising approach to radionuclide therapy of HER2-expressing tumors. In this study, we test the hypothesis that shortening the PNA pretargeting probes would increase the tumor-to-kidney dose ratio. The primary probe ZHER2:342-SR-HP15 and the complementary secondary probes HP16, HP17, and HP18, containing 9, 12, and 15 nucleobases, respectively, and carrying a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator were designed, synthesized, characterized in vitro, and labeled with 177Lu. In vitro pretargeting was studied in HER2-expressing SKOV3 and BT474 cell lines. The biodistribution of these novel probes was evaluated in immunodeficient mice bearing SKOV3 xenografts and compared to the previously studied [177Lu]Lu-HP2. Characterization confirmed the formation of high-affinity duplexes between HP15 and the secondary probes, with the affinity correlating with the length of the complementary PNA sequences. All the PNA-based probes were bound specifically to HER2-expressing cells in vitro. In vivo studies demonstrated HER2-specific uptake of all 177Lu-labeled probes in xenografts in a pretargeting setting. The ratio of cumulated radioactivity in the tumor to the radioactivity in kidneys was dependent on the secondary probe's size and decreased with an increased number of nucleobases. The shortest PNA probe, [177Lu]Lu-HP16, showed the highest tumor-to-kidney ratio. [177Lu]Lu-HP16 is the most promising secondary probe for affibody-mediated tumor pretargeting.


Stability Enhancement of a Dimeric HER2-Specific Affibody Molecule through Sortase A-Catalyzed Head-to-Tail Cyclization.

  • Kristina Westerlund‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Natural backbone-cyclized proteins have an increased thermostability and resistance towards proteases, characteristics that have sparked interest in head-to-tail cyclization as a method to stability-enhance proteins used in diagnostics and therapeutic applications, for example. In this proof-of principle study, we have produced and investigated a head-to-tail cyclized and HER2-specific ZHER2:342 Affibody dimer. The sortase A-mediated cyclization reaction is highly efficient (>95%) under optimized conditions, and renders a cyclic ZHER3:342-dimer with an apparent melting temperature, Tm, of 68 °C, which is 3 °C higher than that of its linear counterpart. Circular dichroism spectra of the linear and cyclic dimers looked very similar in the far-UV range, both before and after thermal unfolding to 90 °C, which suggests that cyclization does not negatively impact the helicity or folding of the cyclic protein. The cyclic dimer had an apparent sub-nanomolar affinity (Kd ~750 pM) to the HER2-receptor, which is a ~150-fold reduction in affinity relative to the linear dimer (Kd ~5 pM), but the anti-HER2 Affibody dimer remained a high-affinity binder even after cyclization. No apparent difference in proteolytic stability was detected in an endopeptidase degradation assay for the cyclic and linear dimers. In contrast, in an exopeptidase degradation assay, the linear dimer was shown to be completely degraded after 5 min, while the cyclic dimer showed no detectable degradation even after 60 min. We further demonstrate that a site-specifically DyLight 594-labeled cyclic dimer shows specific binding to HER2-overexpressing cells. Taken together, the results presented here demonstrate that head-to-tail cyclization can be an effective strategy to increase the stability of an Affibody dimer.


Detection of Tumor-Associated Membrane Receptors on Extracellular Vesicles from Non-Small Cell Lung Cancer Patients via Immuno-PCR.

  • Christiane Stiller‎ et al.
  • Cancers‎
  • 2021‎

Precision cancer medicine for non-small-cell lung cancer (NSCLC) has increased patient survival. Nevertheless, targeted agents towards tumor-associated membrane receptors only result in partial remission for a limited time, calling for approaches which allow longitudinal treatment monitoring. Rebiopsy of tumors in the lung is challenging, and metastatic lesions may have heterogeneous signaling. One way ahead is to use liquid biopsies such as circulating tumor DNA or small extracellular vesicles (sEVs) secreted by the tumor into blood or other body fluids. Herein, an immuno-PCR-based detection of the tumor-associated membrane receptors EGFR, HER2, and IGF-1R on CD9-positive sEVs from NSCLC cells and pleural effusion fluid (PE) of NSCLC patients is developed utilizing DNA conjugates of antibody mimetics and affibodies, as detection agents. Results on sEVs purified from culture media of NSCLC cells treated with anti-EGFR siRNA, showed that the reduction of EGFR expression can be detected via immuno-PCR. Protein profiling of sEVs from NSCLC patient PE samples revealed the capacity to monitor EGFR, HER2, and IGF-1R with the immuno-PCR method. We detected a significantly higher EGFR level in sEVs derived from a PE sample of a patient with an EGFR-driven NSCLC adenocarcinoma than in sEVs from PE samples of non-EGFR driven adenocarcinoma patients or in samples from patients with benign lung disease. In summary, we have developed a diagnostic method for sEVs in liquid biopsies of cancer patients which may be used for longitudinal treatment monitoring to detect emerging bypassing resistance mechanisms in a noninvasive way.


Exploiting Electrostatic Interaction for Highly Sensitive Detection of Tumor-Derived Extracellular Vesicles by an Electrokinetic Sensor.

  • Siddharth Sourabh Sahu‎ et al.
  • ACS applied materials & interfaces‎
  • 2021‎

We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: