2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour.

  • Subhashis Banerjee‎ et al.
  • Nature communications‎
  • 2014‎

Synthetic drug-like molecules that directly modulate the activity of key clock proteins offer the potential to directly modulate the endogenous circadian rhythm and treat diseases associated with clock dysfunction. Here we demonstrate that synthetic ligands targeting a key component of the mammalian clock, the nuclear receptors REV-ERBα and β, regulate sleep architecture and emotional behaviour in mice. REV-ERB agonists induce wakefulness and reduce REM and slow-wave sleep. Interestingly, REV-ERB agonists also reduce anxiety-like behaviour. These data are consistent with increased anxiety-like behaviour of REV-ERBβ-null mice, in which REV-ERB agonists have no effect. These results indicate that pharmacological targeting of REV-ERB may lead to the development of novel therapeutics to treat sleep disorders and anxiety.


Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression.

  • Jennifer G Bray‎ et al.
  • Neuropharmacology‎
  • 2013‎

It has been shown that ethanol exposure can activate astrocytes and microglia resulting in the production of neuroimmune factors, including the chemokine CCL2. The role of these neuroimmune factors in the effects of ethanol on the central nervous system has yet to be elucidated. To address this question, we investigated the effects of ethanol on synaptic transmission and plasticity in the hippocampus from mice that express elevated levels of CCL2 in the brain and their non-transgenic littermate controls. The brains of the transgenic mice simulate one aspect of the alcoholic brain, chronically increased levels of CCL2. We used extracellular field potential recordings in acutely isolated hippocampal slices to identify neuroadaptive changes produced by elevated levels of CCL2 and how these neuroadaptive changes affect the actions of acute ethanol. Results showed that synaptic transmission and the effects of ethanol on synaptic transmission were similar in the CCL2-transgenic and non-transgenic hippocampus. However, long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory, in the CCL2-transgenic hippocampus was resistant to the ethanol-induced depression of LTP observed in the non-transgenic hippocampus. Consistent with these results, ethanol pretreatment significantly impaired cued and contextual fear conditioning in non-transgenic mice, but had no effect in CCL2-transgenic mice. These data show that chronically elevated levels of CCL2 in the hippocampus produce neuroadaptive changes that block the depressing effects of ethanol on hippocampal synaptic plasticity and support the hypothesis that CCL2 may provide a neuroprotective effect against the devastating actions of ethanol on hippocampal function.


Neurobiological signatures of alcohol dependence revealed by protein profiling.

  • Giorgio Gorini‎ et al.
  • PloS one‎
  • 2013‎

Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE), two-bottle choice (2BC) paradigm. We analyzed cerebral cortices (CTX) and midbrains (MB) from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to understanding of organizational principles of CTX and MB proteomes, and define potential new molecular targets for treating alcohol addiction. The integrative analysis employed here highlight the advantages of systems approaches in studying the neurobiology of alcohol addiction.


IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase.

  • Laura L Dugan‎ et al.
  • PloS one‎
  • 2009‎

Multiple studies have shown that plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) are elevated in patients with important and prevalent adverse health conditions, including atherosclerosis, diabetes, obesity, obstructive sleep apnea, hypertension, and frailty. Higher plasma levels of IL-6, in turn, increase the risk of many conditions associated with aging including age-related cognitive decline. However, the mechanisms underlying this association between IL-6 and cognitive vulnerability remain unclear.


A potential role for adiponectin receptor 2 (AdipoR2) in the regulation of alcohol intake.

  • Vez Repunte-Canonigo‎ et al.
  • Brain research‎
  • 2010‎

The anterior cingulate cortex (ACC) has been implicated in alcohol and drug addiction. We recently identified the small G protein K-ras as an alcohol-regulated gene in the ACC by gene expression analysis. We show here that the adiponectin receptor 2 (AdipoR2) was differentially regulated by alcohol in the ACC in a K-ras-dependent manner. Additionally, withdrawal-associated increased drinking was attenuated in AdipoR2 null mice. Intracellular recordings revealed that adiponectin increased the excitability of ACC neurons and that this effect was more pronounced during alcohol withdrawal, suggesting that AdipoR2 signaling may contribute to increased ACC activity. Altogether, the data implicate K-ras-regulated pathways involving AdipoR2 in the cellular and behavioral actions of alcohol that may contribute to overactivity of the ACC during withdrawal and excessive alcohol drinking.


A pivotal role for Interferon-α receptor-1 in neuronal injury induced by HIV-1.

  • Hina Singh‎ et al.
  • Journal of neuroinflammation‎
  • 2020‎

HIV-1 infection remains a major public health concern despite effective combination antiretroviral therapy (cART). The virus enters the central nervous system (CNS) early in infection and continues to cause HIV-associated neurocognitive disorders (HAND). The pathogenic mechanisms of HIV-associated brain injury remain incompletely understood. Since HIV-1 activates the type I interferon system, which signals via interferon-α receptor (IFNAR) 1 and 2, this study investigated the potential role of IFNAR1 in HIV-induced neurotoxicity.


Evaluation of neurotoxicity and long-term function and behavior following intrathecal 1 % 2-chloroprocaine in juvenile rats.

  • Suellen M Walker‎ et al.
  • Neurotoxicology‎
  • 2022‎

Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 μL/g at P7, 0.75 μL/g at P14, 0.5 μL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.


Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice.

  • Laura B Ferguson‎ et al.
  • PLoS computational biology‎
  • 2022‎

Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.


The 5-HT(7) receptor as a mediator and modulator of antidepressant-like behavior.

  • Gor Sarkisyan‎ et al.
  • Behavioural brain research‎
  • 2010‎

The 5-HT(7) receptor has been suggested as a target for treating depression since inactivation or blockade of the receptor has an antidepressant-like behavioral effect. The present study investigated possible interactions between various classes of drugs with antidepressant properties and blockade or inactivation of the 5-HT(7) receptor. Immobility despair in the tail suspension test and the forced swim test was evaluated in mice lacking the 5-HT(7) receptor (5-HT(7)(-/-)) and in wild-type controls (5-HT(7)(+/+)) following acute drug treatments. Citalopram, a selective serotonin reuptake inhibitor and widely used antidepressant, dose-dependently reduced immobility in the tail suspension test in both 5-HT(7)(+/+) and 5-HT(7)(-/-) mice. Combining doses of citalopram and the 5-HT(7) receptor antagonist SB-269970 that by themselves did not affect behavior, reduced immobility in 5-HT(7)(+/+) mice in both the tail suspension test and the forced swim test. No effect was seen in 5-HT(7)(-/-) mice. Desipramine and reboxetine, two norepinephrine reuptake inhibitors, dose-dependently reduced immobility in the tail suspension test in 5-HT(7)(+/+) mice, but had no effect in 5-HT(7)(-/-) mice. A synergistic effect between desipramine and SB-269970 was found in both behavioral tests in 5-HT(7)(+/+) mice. Reboxetine combined with SB-269970 had effect only in the forced swim test. GBR 12909, a dopamine reuptake inhibitor, dose-dependently reduced tail suspension test immobility in both genotypes. There was no interaction between GBR 12909 and SB-269970. Aripiprazole, an antipsychotic, reduced immobility in both tests in 5-HT(7)(+/+) mice, but not in 5-HT(7)(-/-) mice. The results show that the 5-HT(7) receptor is required for the observed interaction between this receptor and antidepressants such as citalopram. The data furthermore support the hypothesis that the 5-HT(7) receptor might be a suitable target for treating depression.


Genome-wide gene expression analysis identifies K-ras as a regulator of alcohol intake.

  • Vez Repunte-Canonigo‎ et al.
  • Brain research‎
  • 2010‎

Adaptations in the anterior cingulate cortex (ACC) have been implicated in alcohol and drug addiction. To identify genes that may contribute to excessive drinking, here we performed microarray analyses in laser microdissected rat ACC after a single or repeated administration of an intoxicating dose of alcohol (3 g/kg). Expression of the small G protein K-ras was differentially regulated following both single and repeated alcohol administration. We also observed that voluntary alcohol intake in K-ras heterozygous null mice (K-ras(+/-)) did not increase after withdrawal from repeated cycles of intermittent ethanol vapor exposure, unlike in their wild-type littermates. To identify K-ras regulated pathways, we then profiled gene expression in the ACC of K-ras(+/-), heterozygous null mice for the K-ras negative regulator Nf1 (Nf1(+/-)) and wild-type mice following repeated administration of an intoxicating dose of alcohol. Pathway analysis showed that alcohol differentially affected various pathways in a K-ras dependent manner - some of which previously shown to be regulated by alcohol - including the insulin/PI3K pathway, the NF-kappaB, the phosphodiesterases (PDEs) pathway, the Jak/Stat and the adipokine signaling pathways. Altogether, the data implicate K-ras-regulated pathways in the regulation of excessive alcohol drinking after a history of dependence.


Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation.

  • Ariadna Amador‎ et al.
  • PloS one‎
  • 2016‎

The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag.


Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice.

  • Virginie Courchet‎ et al.
  • Nature communications‎
  • 2018‎

Recently, numerous rare de novo mutations have been identified in patients diagnosed with autism spectrum disorders (ASD). However, despite the predicted loss-of-function nature of some of these de novo mutations, the affected individuals are heterozygous carriers, which would suggest that most of these candidate genes are haploinsufficient and/or lead to expression of dominant-negative forms of the protein. Here, we tested this hypothesis with the candidate ASD gene Nuak1 that we previously identified for its role in the development of cortical connectivity. We report that Nuak1 is haploinsufficient in mice with regard to its function in cortical development. Furthermore Nuak1+/- mice show a combination of abnormal behavioral traits ranging from defective spatial memory consolidation, defects in social novelty (but not social preference) and abnormal sensorimotor gating. Overall, our results demonstrate that Nuak1 haploinsufficiency leads to defects in the development of cortical connectivity and a complex array of behavorial deficits.


Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system.

  • Melanie M Hoefer‎ et al.
  • Experimental neurology‎
  • 2015‎

Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV-1 gp120tg) at 3-4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6-7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV-1 gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV-1 gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV-1 gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1 gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1 gp120 expression resulted in the most pronounced, long lasting pre- and post-synaptic alterations coinciding with impaired learning and memory.


NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism.

  • Shichun Tu‎ et al.
  • Nature communications‎
  • 2017‎

Transcription factor MEF2C regulates multiple genes linked to autism spectrum disorder (ASD), and human MEF2C haploinsufficiency results in ASD, intellectual disability, and epilepsy. However, molecular mechanisms underlying MEF2C haploinsufficiency syndrome remain poorly understood. Here we report that Mef2c +/-(Mef2c-het) mice exhibit behavioral deficits resembling those of human patients. Gene expression analyses on brains from these mice show changes in genes associated with neurogenesis, synapse formation, and neuronal cell death. Accordingly, Mef2c-het mice exhibit decreased neurogenesis, enhanced neuronal apoptosis, and an increased ratio of excitatory to inhibitory (E/I) neurotransmission. Importantly, neurobehavioral deficits, E/I imbalance, and histological damage are all ameliorated by treatment with NitroSynapsin, a new dual-action compound related to the FDA-approved drug memantine, representing an uncompetitive/fast off-rate antagonist of NMDA-type glutamate receptors. These results suggest that MEF2C haploinsufficiency leads to abnormal brain development, E/I imbalance, and neurobehavioral dysfunction, which may be mitigated by pharmacological intervention.


Alcohol and IL-6 Alter Expression of Synaptic Proteins in Cerebellum of Transgenic Mice with Increased Astrocyte Expression of IL-6.

  • Donna L Gruol‎ et al.
  • Neuroscience‎
  • 2020‎

Recent studies indicate that neuroimmune factors, including the cytokine interleukin-6 (IL-6), play a role in the CNS actions of alcohol. The cerebellum is a sensitive target of alcohol, but few studies have examined a potential role for neuroimmune factors in the actions of alcohol on this brain region. A number of studies have shown that synaptic transmission, and in particular inhibitory synaptic transmission, is an important cerebellar target of alcohol. IL-6 also alters synaptic transmission, although it is unknown if IL-6 targets are also targets of alcohol. This is an important issue because alcohol induces glial production of IL-6, which could then covertly influence the actions of alcohol. The persistent cerebellar effects of both IL-6 and alcohol typically involve chronic exposure and, presumably, altered gene and protein expression. Thus, in the current studies we tested the possibility that proteins involved in inhibitory and excitatory synaptic transmission in the cerebellum are common targets of alcohol and IL-6. We used transgenic mice that express elevated levels of astrocyte produced IL-6 to model persistently elevated expression of IL-6, as would occur in alcohol use disorders, and a chronic intermittent alcohol exposure/withdrawal paradigm (CIE/withdrawal) that is known to produce alcohol dependence. Multiple cerebellar synaptic proteins were assessed by Western blot. Results show that IL-6 and CIE/withdrawal have both unique and common actions that affect synaptic protein expression. These common targets could provide sites for IL-6/alcohol exposure/withdrawal interactions and play an important role in cerebellar symptoms of alcohol use such as ataxia.


Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model.

  • Gema Lordén‎ et al.
  • Nature communications‎
  • 2022‎

Exquisitely tuned activity of protein kinase C (PKC) isozymes is essential to maintaining cellular homeostasis. Whereas loss-of-function mutations are generally associated with cancer, gain-of-function variants in one isozyme, PKCα, are associated with Alzheimer's disease (AD). Here we show that the enhanced activity of one variant, PKCα M489V, is sufficient to rewire the brain phosphoproteome, drive synaptic degeneration, and impair cognition in a mouse model. This variant causes a modest 30% increase in catalytic activity without altering on/off activation dynamics or stability, underscoring that enhanced catalytic activity is sufficient to drive the biochemical, cellular, and ultimately cognitive effects observed. Analysis of hippocampal neurons from PKCα M489V mice reveals enhanced amyloid-β-induced synaptic depression and reduced spine density compared to wild-type mice. Behavioral studies reveal that this mutation alone is sufficient to impair cognition, and, when coupled to a mouse model of AD, further accelerates cognitive decline. The druggability of protein kinases positions PKCα as a promising therapeutic target in AD.


Chronic alcohol induced mechanical allodynia by promoting neuroinflammation: A mouse model of alcohol-evoked neuropathic pain.

  • Vittoria Borgonetti‎ et al.
  • British journal of pharmacology‎
  • 2023‎

Chronic pain is considered a key factor contributing to alcohol use disorder (AUD). The mechanisms responsible for chronic pain associated with chronic alcohol consumption are unknown. We evaluated the development of chronic pain in a mouse model of alcohol dependence and investigate the role of neuroinflammation.


Drug repurposing screens identify chemical entities for the development of COVID-19 interventions.

  • Malina A Bakowski‎ et al.
  • Nature communications‎
  • 2021‎

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Microglia Control Escalation of Drinking in Alcohol-Dependent Mice: Genomic and Synaptic Drivers.

  • Anna S Warden‎ et al.
  • Biological psychiatry‎
  • 2020‎

Microglia, the primary immune cells of the brain, are implicated in alcohol use disorder. However, it is not known if microglial activation contributes to the transition from alcohol use to alcohol use disorder or is a consequence of alcohol intake.


Prefrontal cortex glutamatergic adaptations in a mouse model of alcohol use disorder.

  • Mahum T Siddiqi‎ et al.
  • Addiction neuroscience‎
  • 2023‎

Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: