Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 94 papers

Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

  • Philip J Robinson‎ et al.
  • Cell‎
  • 2016‎

A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.


Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis.

  • Sebum Lee‎ et al.
  • Neuron‎
  • 2016‎

Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT.


A Viral Protein Restricts Drosophila RNAi Immunity by Regulating Argonaute Activity and Stability.

  • Arabinda Nayak‎ et al.
  • Cell host & microbe‎
  • 2018‎

The dicistrovirus, Cricket paralysis virus (CrPV) encodes an RNA interference (RNAi) suppressor, 1A, which modulates viral virulence. Using the Drosophila model, we combined structural, biochemical, and virological approaches to elucidate the strategies by which CrPV-1A restricts RNAi immunity. The atomic resolution structure of CrPV-1A uncovered a flexible loop that interacts with Argonaute 2 (Ago-2), thereby inhibiting Ago-2 endonuclease-dependent immunity. Mutations disrupting Ago-2 binding attenuates viral pathogenesis in wild-type but not Ago-2-deficient flies. CrPV-1A also contains a BC-box motif that enables the virus to hijack a host Cul2-Rbx1-EloBC ubiquitin ligase complex, which promotes Ago-2 degradation and virus replication. Our study uncovers a viral-based dual regulatory program that restricts antiviral immunity by direct interaction with and modulation of host proteins. While the direct inhibition of Ago-2 activity provides an efficient mechanism to establish infection, the recruitment of a ubiquitin ligase complex enables CrPV-1A to amplify Ago-2 inactivation to restrict further antiviral RNAi immunity.


The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output.

  • Aydan Bulut-Karslioglu‎ et al.
  • Cell stem cell‎
  • 2018‎

A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.


An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth.

  • Lucy C Young‎ et al.
  • Molecular cell‎
  • 2013‎

SHOC2 is mutated in Noonan syndrome and plays a key role in the activation of the ERK-MAPK pathway, which is upregulated in the majority of human cancers. SHOC2 functions as a PP1-regulatory protein and as an effector of MRAS. Here we show that SHOC2 and MRAS form a complex with SCRIB, a polarity protein with tumor suppressor properties. SCRIB functions as a PP1-regulatory protein and antagonizes SHOC2-mediated RAF dephosphorylation through a mechanism involving competition for PP1 molecules within the same macromolecular complex. SHOC2 function is selectively required for the malignant properties of tumor cells with mutant RAS, and both MRAS and SHOC2 play a key role in polarized migration. We propose that MRAS, through its ability to recruit a complex with paradoxical components, coordinates ERK pathway spatiotemporal dynamics with polarity and that this complex plays a key role during tumorigenic growth.


Double impact of cigarette smoke and mechanical ventilation on the alveolar epithelial type II cell.

  • Jan Hirsch‎ et al.
  • Critical care (London, England)‎
  • 2014‎

Ventilator-induced lung injury (VILI) impacts clinical outcomes in acute respiratory distress syndrome (ARDS), which is characterized by neutrophil-mediated inflammation and loss of alveolar barrier function. Recent epidemiological studies suggest that smoking may be a risk factor for the development of ARDS. Because alveolar type II cells are central to maintaining the alveolar epithelial barrier during oxidative stress, mediated in part by neutrophilic inflammation and mechanical ventilation, we hypothesized that exposure to cigarette smoke and mechanical strain have interactive effects leading to the activation of and damage to alveolar type II cells.


Peripheral Elevation of a Klotho Fragment Enhances Brain Function and Resilience in Young, Aging, and α-Synuclein Transgenic Mice.

  • Julio Leon‎ et al.
  • Cell reports‎
  • 2017‎

Cognitive dysfunction and decreased mobility from aging and neurodegenerative conditions, such as Parkinson and Alzheimer diseases, are major biomedical challenges in need of more effective therapies. Increasing brain resilience may represent a new treatment strategy. Klotho, a longevity factor, enhances cognition when genetically and broadly overexpressed in its full, wild-type form over the mouse lifespan. Whether acute klotho treatment can rapidly enhance cognitive and motor functions or induce resilience is a gap in our knowledge of its therapeutic potential. Here, we show that an α-klotho protein fragment (αKL-F), administered peripherally, surprisingly induced cognitive enhancement and neural resilience despite impermeability to the blood-brain barrier in young, aging, and transgenic α-synuclein mice. αKL-F treatment induced cleavage of the NMDAR subunit GluN2B and also enhanced NMDAR-dependent synaptic plasticity. GluN2B blockade abolished αKL-F-mediated effects. Peripheral αKL-F treatment is sufficient to induce neural enhancement and resilience in mice and may prove therapeutic in humans.


Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain.

  • Fuxin Lu‎ et al.
  • Experimental neurology‎
  • 2018‎

The N-methyl-d-aspartate-type glutamate receptor (NMDAR)-associated multiprotein complexes are indispensable for synaptic plasticity and cognitive functions. While purification and proteomic analyses of these signaling complexes have been performed in adult rodent and human brain, much less is known about the protein composition of NMDAR complexes in the developing brain and their modifications by neonatal hypoxic-ischemic (HI) brain injury. In this study, the postsynaptic density proteins were prepared from postnatal day 9 naïve, sham-operated and HI-injured mouse cortex. The GluN2B-containing NMDAR complexes were purified by immunoprecipitation with a mouse GluN2B antibody and subjected to mass spectrometry analysis for determination of the GluN2B binding partners. A total of 71 proteins of different functional categories were identified from the naïve animals as native GluN2B-interacting partners in the developing mouse brain. Neonatal HI reshaped the postsynaptic GluN2B interactome by recruiting new proteins, including multiple kinases, into the complexes; and modifying the existing associations within 1h of reperfusion. The early responses of postsynaptic NMDAR complexes and their related signaling networks may contribute to molecular processes leading to cell survival or death, brain damage and/or neurological disorders in term infants with neonatal encephalopathy.


Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock.

  • Krista Kaasik‎ et al.
  • Cell metabolism‎
  • 2013‎

Posttranslational modifications play central roles in myriad biological pathways including circadian regulation. We employed a circadian proteomic approach to demonstrate that circadian timing of phosphorylation is a critical factor in regulating complex GSK3β-dependent pathways and identified O-GlcNAc transferase (OGT) as a substrate of GSK3β. Interestingly, OGT activity is regulated by GSK3β; hence, OGT and GSK3β exhibit reciprocal regulation. Modulating O-GlcNAcylation levels alter circadian period length in both mice and Drosophila; conversely, protein O-GlcNAcylation is circadianly regulated. Central clock proteins, Clock and Period, are reversibly modified by O-GlcNAcylation to regulate their transcriptional activities. In addition, O-GlcNAcylation of a region in PER2 known to regulate human sleep phase (S662-S674) competes with phosphorylation of this region, and this interplay is at least partly mediated by glucose levels. Together, these results indicate that O-GlcNAcylation serves as a metabolic sensor for clock regulation and works coordinately with phosphorylation to fine-tune circadian clock.


Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex.

  • Olav Olsen‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli-CASK-Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-alpha as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS-CASK-liprin-alpha complex recruits components of the synaptic release machinery to adhesive proteins of the active zone.


Molecular constituents of neuronal AMPA receptors.

  • Yuko Fukata‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Dynamic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) underlies aspects of synaptic plasticity. Although numerous AMPAR-interacting proteins have been identified, their quantitative and relative contributions to native AMPAR complexes remain unclear. Here, we quantitated protein interactions with neuronal AMPARs by immunoprecipitation from brain extracts. We found that stargazin-like transmembrane AMPAR regulatory proteins (TARPs) copurified with neuronal AMPARs, but we found negligible binding to GRIP, PICK1, NSF, or SAP-97. To facilitate purification of neuronal AMPAR complexes, we generated a transgenic mouse expressing an epitope-tagged GluR2 subunit of AMPARs. Taking advantage of this powerful new tool, we isolated two populations of GluR2 containing AMPARs: an immature complex with the endoplasmic reticulum chaperone immunoglobulin-binding protein and a mature complex containing GluR1, TARPs, and PSD-95. These studies establish TARPs as the auxiliary components of neuronal AMPARs.


WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development.

  • Joanna Wysocka‎ et al.
  • Cell‎
  • 2005‎

Histone H3 lysine 4 (K4) methylation has been linked to the transcriptional activation in a variety of eukaryotic species. Here we show that a common component of MLL1, MLL2, and hSet1 H3 K4 methyltransferase complexes, the WD40-repeat protein WDR5, directly associates with histone H3 di- and trimethylated at K4 and with H3-K4-dimethylated nucleosomes. WDR5 is required for binding of the methyltransferase complex to the K4-dimethylated H3 tail as well as for global H3 K4 trimethylation and HOX gene activation in human cells. WDR5 is essential for vertebrate development, in that WDR5-depleted X. laevis tadpoles exhibit a variety of developmental defects and abnormal spatial Hox gene expression. Our results are the first demonstration that a WD40-repeat protein acts as a module for recognition of a specific histone modification and suggest a mechanism for reading and writing an epigenetic mark for gene activation.


A transmembrane accessory subunit that modulates kainate-type glutamate receptors.

  • Wei Zhang‎ et al.
  • Neuron‎
  • 2009‎

Glutamate receptors play major roles in excitatory transmission in the vertebrate brain. Among ionotropic glutamate receptors (AMPA, kainate, NMDA), AMPA receptors mediate fast synaptic transmission and require TARP auxiliary subunits. NMDA receptors and kainate receptors play roles in synaptic transmission, but it remains uncertain whether these ionotropic glutamate receptors also have essential subunits. Using a proteomic screen, we have identified NETO2, a brain-specific protein of unknown function, as an interactor with kainate-type glutamate receptors. NETO2 modulates the channel properties of recombinant and native kainate receptors without affecting trafficking of the receptors and also modulates kainate-receptor-mediated mEPSCs. Furthermore, we found that kainate receptors regulate the surface expression of NETO2 and that NETO2 protein levels and surface expression are decreased in mice lacking the kainate receptor GluR6. The results show that NETO2 is a kainate receptor subunit with significant effects on glutamate signaling mechanisms in brain.


Revealing nascent proteomics in signaling pathways and cell differentiation.

  • Craig M Forester‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment.


Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice.

  • Meaghan Morris‎ et al.
  • Nature neuroscience‎
  • 2015‎

The microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Reducing tau levels ameliorates AD-related synaptic, network, and behavioral abnormalities in transgenic mice expressing human amyloid precursor protein (hAPP). We used mass spectrometry to characterize the post-translational modification of endogenous tau isolated from wild-type and hAPP mice. We identified seven types of tau modifications at 63 sites in wild-type mice. Wild-type and hAPP mice had similar modifications, supporting the hypothesis that neuronal dysfunction in hAPP mice is enabled by physiological forms of tau. Our findings provide clear evidence for acetylation and ubiquitination of the same lysine residues; some sites were also targeted by lysine methylation. Our findings refute the hypothesis of extensive O-linked N-acetylglucosamine (O-GlcNAc) modification of endogenous tau. The complex post-translational modification of physiological tau suggests that tau is regulated by diverse mechanisms.


The Gene-Silencing Protein MORC-1 Topologically Entraps DNA and Forms Multimeric Assemblies to Cause DNA Compaction.

  • HyeongJun Kim‎ et al.
  • Molecular cell‎
  • 2019‎

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Comparative Proteomics of Coxiella like Endosymbionts (CLEs) in the Symbiotic Organs of Rhipicephalus sanguineus Ticks.

  • Balasubramanian Cibichakravarthy‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Maternally transmitted obligatory endosymbionts are found in the female gonads as well as in somatic tissue and are expected to provide missing metabolite to their hosts. These deficiencies are presumably complemented through specific symbiotic microorganisms such as Coxiella-like endosymbionts (CLEs) of Rhipicephalus ticks. CLEs are localized in specialized host tissue cells within the Malpighian tubules (Mt) and the ovaries (Ov) from which they are maternally transmitted to developing oocytes. These two organs differ in function and cell types, but the role of CLEs in these tissues is unknown. To probe possible functions of CLEs, comparative proteomics was performed between Mt and Ov of R. sanguineus ticks. Altogether, a total of 580 and 614 CLE proteins were identified in Mt and Ov, respectively. Of these, 276 CLE proteins were more abundant in Mt, of which 12 were significantly differentially abundant. In Ov, 290 CLE proteins were more abundant, of which 16 were significantly differentially abundant. Gene Ontology analysis revealed that most of the proteins enriched in Mt are related to cellular metabolic functions and stress responses, whereas in Ov, the majority were related to cell proliferation suggesting CLEs function differentially and interdependently with host requirements specific to each organ. The results suggest Mt CLEs provide essential nutrients to its host and Ov CLEs promote proliferation and vertical transmission to tick progeny. IMPORTANCE Here we compare the Coxiella-like endosymbionts (CLEs) proteomes from Malpighian tubule (Mt) and the ovaries (Ov) of the brown dog tick Rhipicephalus sanguineus. Our results support the hypothesis that CLEs function interdependently with host requirements in each of the organs. The different functional specificity of CLE in the same host suggest that metabolic capabilities evolved according to the constrains imposed by the specific organ function and requirements. Our findings provide specific CLE protein targets that can be useful for future studies of CLE biology with a focus on tick population control.


The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis.

  • Zhu Yang‎ et al.
  • Journal of proteomics‎
  • 2020‎

Plants can sense the gravitational force. When plants perceive a change in this natural force, they tend to reorient their organs with respect to the direction of the gravity vector, i.e., the shoot stem curves up. In the present study, we performed a 4C quantitative phosphoproteomics to identify those altered protein phosphosites resulting from 150 s of reorientation of Arabidopsis plants on earth. A total of 5556 phosphopeptides were identified from the gravistimulated Arabidopsis. Quantification based on the 15N-stable isotope labeling in Arabidopsis (SILIA) and computational analysis of the extracted ion chromatogram (XIC) of phosphopeptides showed eight and five unique PTM peptide arrays (UPAs) being up- and down-regulated, respectively, by gravistimulation. Among the 13 plant reorientation-responsive protein groups, many are related to the cytoskeleton dynamic and plastid movement. Interestingly, the most gravistimulation-responsive phosphosites are three serine residues, S350, S376, and S410, of a blue light receptor Phototropin 1 (PHOT1). The immunoblots experiment confirmed that the change of gravity vector indeed affected the phosphorylation level of S410 in PHOT1. The functional role of PHOT1 in gravitropic response was further validated with gravicurvature measurement in the darkness of both the loss-of-function double mutant phot1phot2 and its complementary transgenic plant PHOT1/phot1phot2. SIGNIFICANCE: The organs of sessile organisms, plants, are able to move in response to environmental stimuli, such as gravity vector, touch, light, water, or nutrients, which is termed tropism. For instance, the bending of plant shoots to the light source is called phototropism. Since all plants growing on earth are continuously exposed to the gravitational field, plants receive the mechanical signal elicited by the gravity vector change and convert it into plant morphogenesis, growth, and development. Past studies have resulted in various hypotheses for gravisensing, but our knowledge about how the signal of gravity force is transduced in plant cells is still minimal. In the present study, we performed a SILIA-based 4C quantitative phosphoproteomics on 150-s gravistimulated Arabidopsis seedlings to explore the phosphoproteins involved in the gravitropic response. Our data demonstrated that such a short-term reorientation of Arabidopsis caused changes in phosphorylation of cytoskeleton structural proteins like Chloroplast Unusual Positioning1 (CHUP1), Patellin3 (PATL3), and Plastid Movement Impaired2 (PMI2), as well as the blue light receptor Phototropin1 (PHOT1). These results suggested that protein phosphorylation plays a crucial role in gravisignaling, and two primary tropic responses of plants, gravitropism and phototropism, may share some common components and signaling pathways. We expect that the phosphoproteins detected from this study will facilitate the subsequent molecular and cellular studies on the mechanism underlying the signal transduction in plant gravitropic response.


Composition and origin of lung fluid proteome in premature infants and relationship to respiratory outcome.

  • Philip L Ballard‎ et al.
  • PloS one‎
  • 2020‎

Infants born at extremely low gestational age are at high risk for bronchopulmonary dysplasia and continuing lung disease. There are no early clinical biomarkers for pulmonary outcome and limited therapeutic interventions.


LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation.

  • Alexander von Appen‎ et al.
  • Nature‎
  • 2020‎

During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: