Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Localization of Kv2.2 protein in Xenopus laevis embryos and tadpoles.

  • Nicole G Gravagna‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Voltage-gated potassium (Kv) channels sculpt neuronal excitability and play important developmental roles. Kv channels consist of pore-forming alpha- and auxiliary subunits. For many Kv alpha-subunits, existing mRNA probes and antibodies have allowed analysis of expression patterns, typically during adult stages. Here, we focus on the Kv2.2 alpha-subunit, for which the mRNA shows broad expression in the embryo and adult. A lack of suitable antibodies, however, has hindered detailed analysis of Kv2.2 protein localization, especially during development. We developed an antibody that specifically recognizes Kv2.2 protein in Xenopus laevis, a vertebrate well suited for study of early developmental stages. The Kv2.2 antibody recognized heterologously expressed Kv2.2 but not the closely related Kv2.1 protein. Immunodetection of the protein showed its presence at St 32 in ventrolateral regions of the hindbrain and spinal cord. At later stages, several sensory tissues (retina, otic, and olfactory epithelia) also expressed Kv2.2 protein. As development progressed in the central nervous system, Kv2.2 protein distribution expanded in close association with the cytoskeletal marker alpha-tubulin, consistent with growth of neuronal tracts. We analyzed the subcellular distribution of Kv2.2 protein within single cultured neurons. In addition to a surface membrane presence, Kv2.2 protein also resided intracellularly closely associated with alpha-tubulin, as in vivo. Furthermore, in contrast to Kv2.1, Kv2.2 protein localized to long, axonal-like processes, consistent with its in vivo location in tracts. Despite their primary sequence similarity, the contrasting localizations of Kv2.1 and Kv2.2 support different roles for the two during development and neuronal signaling.


In vivo analysis of Kvbeta2 function in Xenopus embryonic myocytes.

  • Meredith A Lazaroff‎ et al.
  • The Journal of physiology‎
  • 2002‎

Kv1 potassium channels consist of pore-forming alpha subunits as well as auxiliary beta subunits. In heterologous systems, Kv1alpha subunits suffice for induction of voltage-dependent potassium current (I(Kv)). Although Kv1 channels can be expressed without auxiliary subunits in heterologous systems, coexpression with Kvbeta subunits has dramatic effects on surface expression and kinetic properties. Much less is known about the functional roles of Kvbeta subunits in vivo, despite their presence in the majority of native Kv1 channel complexes. We used an antisense approach to probe the contribution of Kvbeta2 subunits to native Kv1 channel function in embryonic myocytes. We compared the effects of antisense Kvbeta2 treatment on the whole cell I(Kv) to those produced by overexpression of a dominant-negative Kv1alpha subunit. The reductions in the maximal potassium conductance produced by antisense Kvbeta2 treatment and elimination of Kv1alpha subunit function were not significantly different from each other. In addition, simultaneous elimination of Kv1alpha and Kvbeta2 subunit function resulted in no further reduction of the maximal conductance. The Kv channel complexes targeted by Kvbeta2 and/or Kv1alpha subunit elimination contributed to action potential repolarization because elimination of either or both subunits led to increases in the duration of the action potential. As for potassium conductance, the effects of elimination of both alpha and beta subunits on the duration of the action potential were not additive. Taken together, the results suggest that Kv1 potassium channel complexes in vivo have a strong requirement for both alpha and beta subunits.


Kv1 potassium channel complexes in vivo require Kvbeta2 subunits in dorsal spinal neurons.

  • Ricardo H Pineda‎ et al.
  • Journal of neurophysiology‎
  • 2008‎

Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation. At both 24 and 48 h, antisense methods produced efficient knock-down of both Kvbeta2 protein and IKv. At both times, dominant negative suppression of Kv1 channels also eliminated IKv, indicating that Kv1 channels require Kvbeta2 subunits to function in dorsal spinal neurons. Even though Kv1 channels determined the IKv values of both dorsal neuron types, comparisons of their IKv properties revealed important differences at both developmental stages. The latter results support the notion that different Kv1 alpha-subunits and/or posttranslational modifications underlie the IKv values of the two dorsal neuron types. Overall, the results demonstrate that Kvbeta2 subunits function in vivo as obligatory subunits of Kv1 channels in at least two neuron types and two different developmental stages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: