Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor.

  • Kamal Ahmed‎ et al.
  • Cancer letters‎
  • 2019‎

Wnt signaling is overactivated in triple-negative breast cancer (TNBC) and several other cancers, and its suppression emerges as an effective anticancer treatment. However, no drugs targeting the Wnt pathway exist on the market nor in advanced clinical trials. Here we provide a comprehensive body of preclinical evidence that an anti-leprotic drug clofazimine is effective against TNBC. Clofazimine specifically inhibits canonical Wnt signaling in a panel of TNBC cells in vitro. In several mouse xenograft models of TNBC, clofazimine efficiently suppresses tumor growth, correlating with in vivo inhibition of the Wnt pathway in the tumors. Clofazimine is well compatible with doxorubicin, exerting additive effects on tumor growth suppression, producing no adverse effects. Its excellent and well-characterized pharmacokinetics profile, lack of serious adverse effects at moderate (yet therapeutically effective) doses, its combinability with cytotoxic therapeutics, and the novel mechanistic mode of action make clofazimine a prime candidate for the repositioning clinical trials. Our work may bring forward the anti-Wnt targeted therapy, desperately needed for thousands of patients currently lacking targeted treatments.


Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth.

  • Cezanne Miete‎ et al.
  • Nature communications‎
  • 2022‎

Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/β-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated β-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.


Dramatic dysbalancing of the Wnt pathway in breast cancers.

  • Alexey Koval‎ et al.
  • Scientific reports‎
  • 2018‎

Wnt signaling is important for breast development and remodeling during pregnancy and lactation. Epigenetic modifications change expression levels of components of the Wnt pathway, underlying oncogenic transformation. However, no clear Wnt component increasing expression universally across breast cancer (BC) or its most Wnt-dependent triple-negative BC (TNBC) subgroup has been identified, delaying development of targeted therapies. Here we perform network correlation analysis of expression of >100 Wnt pathway components in hundreds of healthy and cancerous breast tissues. Varying in expression levels among people, Wnt components remarkably coordinate their production; this coordination is dramatically decreased in BC. Clusters with coordinated gene expression exist within the healthy cohort, highlighting Wnt signaling subtypes. Different BC subgroups are identified, characterized by different remaining Wnt signaling signatures, providing the rational for patient stratification for personalizing the therapeutic applications. Key pairwise interactions within the Wnt pathway (some inherited and some established de novo) emerge as targets for future drug discovery against BC.


Wnt-pathway inhibitors with selective activity against triple-negative breast cancer: From thienopyrimidine to quinazoline inhibitors.

  • Cédric Boudou‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

The Wnt-pathway has a critical role in development and tissue homeostasis and has attracted increased attention to develop anticancer drugs due to its aberrant activation in many cancers. In this study, we identified a novel small molecule series with a thienopyrimidine scaffold acting as a downstream inhibitor of the β-catenin-dependent Wnt-pathway. This novel chemotype was investigated using Wnt-dependent triple-negative breast cancer (TNBC) cell lines. Structure activity relationship (SAR) exploration led to identification of low micromolar compounds such as 5a, 5d, 5e and a novel series with quinazoline scaffold such as 9d. Further investigation showed translation of activity to inhibit cancer survival of HCC1395 and MDA-MB-468 TNBC cell lines without affecting a non-cancerous breast epithelial cell line MCF10a. This anti-proliferative effect was synergistic to docetaxel treatment. Collectively, we identified novel chemotypes acting as a downstream inhibitor of β-catenin-dependent Wnt-pathway that could expand therapeutic options to manage TNBC.


Identification of novel elements of the Drosophila blisterome sheds light on potential pathological mechanisms of several human diseases.

  • Oleksii Bilousov‎ et al.
  • PloS one‎
  • 2014‎

Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which--apposition of the dorsal and ventral wing sheets during metamorphosis--is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.


Golgi-Resident Gαo Promotes Protrusive Membrane Dynamics.

  • Gonzalo P Solis‎ et al.
  • Cell‎
  • 2017‎

To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.


Restoration of the GTPase activity and cellular interactions of Gαo mutants by Zn2+ in GNAO1 encephalopathy models.

  • Yonika A Larasati‎ et al.
  • Science advances‎
  • 2022‎

De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.


Shallow- and Deep-Water Ophiura Species Produce a Panel of Chlorin Compounds with Potent Photodynamic Anticancer Activities.

  • Antonina Klimenko‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2023‎

A Pacific brittle star Ophiura sarsii has previously been shown to produce a chlorin (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (ETPA) (1) with potent phototoxic activities, making it applicable to photodynamic therapy. Using extensive LC-MS metabolite profiling, molecular network analysis, and targeted isolation with de novo NMR structure elucidation, we herein identify five additional chlorin compounds from O. sarsii and its deep-sea relative O. ooplax: 10S-Hydroxypheophorbide a (2), Pheophorbide a (3), Pyropheophorbide a (4), (3S,4S,21R)-14-Ethyl-9-(hydroxymethyl)-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (5), and (3S,4S,21R)-14-Ethyl-21-hydroxy-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (6). Chlorins 5 and 6 have not been previously reported in natural sources. Interestingly, low amounts of chlorins 1-4 and 6 could also be identified in a distant species, the basket star Gorgonocephalus cf. eucnemis, demonstrating that chlorins are produced by a wide spectrum of marine invertebrates of the class Ophiuroidea. Following the purification of these major Ophiura chlorin metabolites, we discovered the significant singlet oxygen quantum yield upon their photoinduction and the resulting phototoxicity against triple-negative breast cancer BT-20 cells. These studies identify an arsenal of brittle star chlorins as natural photosensitizers with potential photodynamic therapy applications.


Isolation and Identification of Isocoumarin Derivatives With Specific Inhibitory Activity Against Wnt Pathway and Metabolome Characterization of Lasiodiplodia venezuelensis.

  • Léonie Pellissier‎ et al.
  • Frontiers in chemistry‎
  • 2021‎

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancers are dependent on Wnt pathway overactivation mostly through dysregulation of pathway component protein expression, which necessitates the search for therapeutically relevant compounds targeting them. Highly diverse microorganisms as endophytes represent an underexplored field in the therapeutic natural products research. In the present work, the objective was to explore the chemical diversity and presence of selective Wnt inhibitors within a unique collection of fungi isolated as foliar endophytes from the long-lived tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted with ethyl acetate, and screened for their effects on the Wnt pathway and cell proliferation. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation based on its selective activity. Application of geometric transfer from analytical HPLC conditions to semi-preparative scale and use of dry load sample introduction enabled the isolation of 15 pure compounds in a single step. Among the molecules identified, five are original natural products described for the first time, and six are new to this species. An active fraction obtained by semi-preparative HPLC was re-purified by UHPLC-PDA using a 1.7 µm phenyl column. 75 injections of 8 µg were necessary to obtain sufficient amounts of each compound for structure elucidation and bioassays. Using this original approach, in addition to the two major compounds, a third minor compound identified as (R)-(-)-5-hydroxymellein (18) was obtained, which was found to be responsible for the significant Wnt inhibition activity recorded. Further studies of this compound and its structural analogs showed that only 18 acts in a highly specific manner, with no acute cytotoxicity. This compound is notably selective for upstream components of the Wnt pathway and is able to inhibit the proliferation of three triple negative breast cancer cell lines. In addition to the discovery of Wnt inhibitors of interest, this study contributes to better characterize the biosynthetic potential of L. venezuelensis.


Chemoenzymatic Synthesis of Original Stilbene Dimers Possessing Wnt Inhibition Activity in Triple-Negative Breast Cancer Cells Using the Enzymatic Secretome of Botrytis cinerea Pers.

  • Robin Huber‎ et al.
  • Frontiers in chemistry‎
  • 2022‎

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.


Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells.

  • Laetitia Seguin‎ et al.
  • Communications biology‎
  • 2021‎

Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macropinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of-principle for innovative therapeutic strategies to exploit this Achilles' heel for a significant and unique subset of GBM patients.


Double suppression of the Gα protein activity by RGS proteins.

  • Chen Lin‎ et al.
  • Molecular cell‎
  • 2014‎

Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis on G protein α subunits, restricting their activity downstream from G protein-coupled receptors. Here we identify Drosophila Double hit (Dhit) as a dual RGS regulator of Gαo. In addition to the conventional GTPase-activating action, Dhit possesses the guanine nucleotide dissociation inhibitor (GDI) activity, slowing the rate of GTP uptake by Gαo; both activities are mediated by the same RGS domain. These findings are recapitulated using homologous mammalian Gαo/i proteins and RGS19. Crystal structure and mutagenesis studies provide clues into the molecular mechanism for this unprecedented GDI activity. Physiologically, we confirm this activity in Drosophila asymmetric cell divisions and HEK293T cells. We show that the oncogenic Gαo mutant found in breast cancer escapes this GDI regulation. Our studies identify Dhit and its homologs as double-action regulators, inhibiting Gαo/i proteins both through suppression of their activation and acceleration of their inactivation through the single RGS domain.


Beyond TNBC: Repositioning of Clofazimine Against a Broad Range of Wnt-Dependent Cancers.

  • Jiabin Xu‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Wnt signaling plays key roles in oncogenic transformation and progression in a number of cancer types, including tumors in the breast, colon, ovaries, liver, and other tissues. Despite this importance, no therapy targeting the Wnt pathway currently exists. We have previously shown that the anti-mycobacterium drug clofazimine is a specific inhibitor of Wnt signaling and cell proliferation in triple-negative breast cancer (TNBC). Here, we expand the applicability of clofazimine to a set of other Wnt-dependent cancers. Using a panel of cell lines from hepatocellular carcinoma, glioblastoma, as well as colorectal and ovarian cancer, we show that the efficacy of clofazimine against a given cancer type correlates with the basal levels of Wnt pathway activation and the ability of the drug to inhibit Wnt signaling in it, being further influenced by the cancer mutational spectrum. Our study establishes the basis for patient stratification in the future clinical trials of clofazimine and may ultimately contribute to the establishment of the Wnt pathway-targeted therapy against a diverse set of cancer types relying on the oncogenic Wnt signaling.


Clinical Cases and the Molecular Profiling of a Novel Childhood Encephalopathy-Causing GNAO1 Mutation P170R.

  • Yonika A Larasati‎ et al.
  • Cells‎
  • 2023‎

De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.


Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation.

  • Denis Silachev‎ et al.
  • Acta neuropathologica communications‎
  • 2022‎

GNAO1 encephalopathy characterized by a wide spectrum of neurological deficiencies in pediatric patients originates from de novo heterozygous mutations in the gene encoding Gαo, the major neuronal G protein. Efficient treatments and even the proper understanding of the underlying etiology are currently lacking for this dominant disease. Adequate animal models of GNAO1 encephalopathy are urgently needed. Here we describe establishment and characterization of mouse models of the disease based on two point mutations in GNAO1 with different clinical manifestations. One of them is G203R leading to the early-onset epileptic seizures, motor dysfunction, developmental delay and intellectual disability. The other is C215Y producing much milder clinical outcomes, mostly-late-onset hyperkinetic movement disorder. The resultant mouse models show distinct phenotypes: severe neonatal lethality in GNAO1[G203R]/ + mice vs. normal vitality in GNAO1[C215Y]/ + . The latter model further revealed strong hyperactivity and hyperlocomotion in a panel of behavioral assays, without signs of epilepsy, recapitulating the patients' manifestations. Importantly, despite these differences the two models similarly revealed prenatal brain developmental anomalies, such as enlarged lateral ventricles and decreased numbers of neuronal precursor cells in the cortex. Thus, our work unveils GNAO1 encephalopathy as to a large extent neurodevelopmental malady. We expect that this understanding and the tools we established will be instrumental for future therapeutic developments.


Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton.

  • Anne-Marie Lüchtenborg‎ et al.
  • Development (Cambridge, England)‎
  • 2014‎

Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.


Pediatric Encephalopathy: Clinical, Biochemical and Cellular Insights into the Role of Gln52 of GNAO1 and GNAI1 for the Dominant Disease.

  • Gonzalo P Solis‎ et al.
  • Cells‎
  • 2021‎

Heterotrimeric G proteins are immediate transducers of G protein-coupled receptors-the biggest receptor family in metazoans-and play innumerate functions in health and disease. A set of de novo point mutations in GNAO1 and GNAI1, the genes encoding the α-subunits (Gαo and Gαi1, respectively) of the heterotrimeric G proteins, have been described to cause pediatric encephalopathies represented by epileptic seizures, movement disorders, developmental delay, intellectual disability, and signs of neurodegeneration. Among such mutations, the Gln52Pro substitutions have been previously identified in GNAO1 and GNAI1. Here, we describe the case of an infant with another mutation in the same site, Gln52Arg. The patient manifested epileptic and movement disorders and a developmental delay, at the onset of 1.5 weeks after birth. We have analyzed biochemical and cellular properties of the three types of dominant pathogenic mutants in the Gln52 position described so far: Gαo[Gln52Pro], Gαi1[Gln52Pro], and the novel Gαo[Gln52Arg]. At the biochemical level, the three mutant proteins are deficient in binding and hydrolyzing GTP, which is the fundamental function of the healthy G proteins. At the cellular level, the mutants are defective in the interaction with partner proteins recognizing either the GDP-loaded or the GTP-loaded forms of Gαo. Further, of the two intracellular sites of Gαo localization, plasma membrane and Golgi, the former is strongly reduced for the mutant proteins. We conclude that the point mutations at Gln52 inactivate the Gαo and Gαi1 proteins leading to aberrant intracellular localization and partner protein interactions. These features likely lie at the core of the molecular etiology of pediatric encephalopathies associated with the codon 52 mutations in GNAO1/GNAI1.


A Cytotoxic Porphyrin from North Pacific Brittle Star Ophiura sarsii.

  • Antonina Klimenko‎ et al.
  • Marine drugs‎
  • 2020‎

Triple-negative breast cancer (TNBC) represents the deadliest form of gynecological tumors currently lacking targeted therapies. The ethanol extract of the North Pacific brittle star Ophiura sarsii presented promising anti-TNBC activities. After elimination of the inert material, the active extract was submitted to a bioguided isolation approach using high-resolution semipreparative HPLC-UV, resulting in one-step isolation of an unusual porphyrin derivative possessing strong cytotoxic activity. HRMS and 2D NMR resulted in the structure elucidation of the compound as (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid. Never identified before in Ophiuroidea, porphyrins have found broad applications as photosensitizers in the anticancer photodynamic therapy. The simple isolation of a cytotoxic porphyrin from an abundant brittle star species we describe here may pave the way for novel natural-based developments of targeted anti-cancer therapies.


High capacity in G protein-coupled receptor signaling.

  • Amiran Keshelava‎ et al.
  • Nature communications‎
  • 2018‎

G protein-coupled receptors (GPCRs) constitute a large family of receptors that activate intracellular signaling pathways upon detecting specific extracellular ligands. While many aspects of GPCR signaling have been uncovered through decades of studies, some fundamental properties, like its channel capacity-a measure of how much information a given transmission system can reliably transduce-are still debated. Previous studies concluded that GPCRs in individual cells could transmit around one bit of information about the concentration of the ligands, allowing only for a reliable on or off response. Using muscarinic receptor-induced calcium response measured in individual cells upon repeated stimulation, we show that GPCR signaling systems possess a significantly higher capacity. We estimate the channel capacity of this system to be above two, implying that at least four concentration levels of the agonist can be distinguished reliably. These findings shed light on the basic principles of GPCR signaling.


Improved approaches to channel capacity estimation discover compromised GPCR signaling in diverse cancer cells.

  • Alexey Koval‎ et al.
  • iScience‎
  • 2023‎

Intracellular signaling orchestrates an organism's development and functioning and underlies various pathologies, such as cancer, when aberrant. A universal cell signaling characteristic is channel capacity - the measure of how much information a given transmitting system can reliably transduce. Here, we describe improved approaches to quantify GPCR signaling channel capacity in single cells, averaged across cell population. We assess the channel capacity based on distribution of residuals by the cellular response amplitude. We further develop means to handle irregularly responding cancer cells using the integral values of their response to different agonist concentrations. These approaches enabled us to analyze, for the first time, channel capacity in single cancer cells. A universal feature emerging for different cancer cell types is a decreased channel capacity of their GPCR signaling. These findings provide experimental validation to the hypothesis that cancer is an information disease, bearing importance for basic cancer biology and anticancer drug discovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: