2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition.

  • Wendy Mao‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2019‎

Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting.


Dynamic establishment of recipient resident memory T cell repertoire after human intestinal transplantation.

  • Wenyu Jiao‎ et al.
  • EBioMedicine‎
  • 2024‎

Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues.


Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire.

  • Mohsen Khosravi-Maharlooei‎ et al.
  • The Journal of clinical investigation‎
  • 2019‎

We investigated human T-cell repertoire formation using high throughput TCRβ CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3β sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3βs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3βs and for Type 1 diabetes-associated autoreactive CDR3βs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3βs between mice. Our data collectively implicate preferential positive selection for shared human CDR3βs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing "public" sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRβ sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of "public" human TCRβ sequences.


Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice.

  • Mohsen Khosravi-Maharlooei‎ et al.
  • Journal of autoimmunity‎
  • 2021‎

We evaluated the role of the thymus in development of multi-organ autoimmunity in human immune system (HIS) mice. T cells were essential for disease development and the same T cell clones with varying phenotypes infiltrated multiple tissues. De novo-generated hematopoietic stem cell (HSC)-derived T cells were the major disease drivers, though thymocytes pre-existing in grafted human thymi contributed if not first depleted. HIS mice with a native mouse thymus developed disease earlier than thymectomized mice with a thymocyte-depleted human thymus graft. Defective structure in the native mouse thymus was associated with impaired negative selection of thymocytes expressing a transgenic TCR recognizing a self-antigen. Disease developed without direct recognition of antigens on recipient mouse MHC. While human thymus grafts had normal structure and negative selection, failure to tolerize human T cells recognizing mouse antigens presented on HLA molecules may explain eventual disease development. These new insights have implications for human autoimmunity and suggest methods of avoiding autoimmunity in next-generation HIS mice.


TGM4: an immunogenic prostate-restricted antigen.

  • Zoila A Lopez-Bujanda‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

Prostate cancer is the second leading cause of cancer-related death in men in the USA; death occurs when patients progress to metastatic castration-resistant prostate cancer (CRPC). Although immunotherapy with the Food and Drug Administration-approved vaccine sipuleucel-T, which targets prostatic acid phosphatase (PAP), extends survival for 2-4 months, the identification of new immunogenic tumor-associated antigens (TAAs) continues to be an unmet need.


Impact of COVID-19 Pandemic on Physician-Scientist Trainees to Faculty One Year into the Pandemic.

  • Aleksandar Obradovic‎ et al.
  • Research square‎
  • 2023‎

Physician-scientists play a crucial role in advancing biomedical sciences. Proportionally fewer physicians are actively engaged in scientific pursuits, attributed to attrition in the training and retention pipeline. This national study evaluated the ongoing and longer-term impact of the COVID-19 pandemic on research productivity for physician-scientists at all levels of training.


Human Intestinal Allografts Contain Functional Hematopoietic Stem and Progenitor Cells that Are Maintained by a Circulating Pool.

  • Jianing Fu‎ et al.
  • Cell stem cell‎
  • 2019‎

Human intestinal transplantation often results in long-term mixed chimerism of donor and recipient blood in transplant patients. We followed the phenotypes of chimeric peripheral blood cells in 21 patients receiving intestinal allografts over 5 years. Donor lymphocyte phenotypes suggested a contribution of hematopoietic stem and progenitor cells (HSPCs) from the graft. Surprisingly, we detected donor-derived HSPCs in intestinal mucosa, Peyer's patches, mesenteric lymph nodes, and liver. Human gut HSPCs are phenotypically similar to bone marrow HSPCs and have multilineage differentiation potential in vitro and in vivo. Analysis of circulating post-transplant donor T cells suggests that they undergo selection in recipient lymphoid organs to acquire immune tolerance. Our longitudinal study of human HSPCs carried in intestinal allografts demonstrates their turnover kinetics and gradual replacement of donor-derived HSPCs from a circulating pool. Thus, we have demonstrated the existence of functioning HSPCs in human intestines with implications for promoting tolerance in transplant recipients.


KLRG1 marks tumor-infiltrating CD4 T cell subsets associated with tumor progression and immunotherapy response.

  • Casey R Ager‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Current methods for biomarker discovery and target identification in immuno-oncology rely on static snapshots of tumor immunity. To thoroughly characterize the temporal nature of antitumor immune responses, we developed a 34-parameter spectral flow cytometry panel and performed high-throughput analyses in critical contexts. We leveraged two distinct preclinical models that recapitulate cancer immunoediting (NPK-C1) and immune checkpoint blockade (ICB) response (MC38), respectively, and profiled multiple relevant tissues at and around key inflection points of immune surveillance and escape and/or ICB response. Machine learning-driven data analysis revealed a pattern of KLRG1 expression that uniquely identified intratumoral effector CD4 T cell populations that constitutively associate with tumor burden across tumor models, and are lost in tumors undergoing regression in response to ICB. Similarly, a Helios-KLRG1+ subset of tumor-infiltrating regulatory T cells was associated with tumor progression from immune equilibrium to escape and was also lost in tumors responding to ICB. Validation studies confirmed KLRG1 signatures in human tumor-infiltrating CD4 T cells associate with disease progression in renal cancer. These findings nominate KLRG1+ CD4 T cell populations as subsets for further investigation in cancer immunity and demonstrate the utility of longitudinal spectral flow profiling as an engine of dynamic biomarker discovery.


Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages.

  • Aleksandar Obradovic‎ et al.
  • Cell‎
  • 2021‎

Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: