Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment.

  • Isaac Almendros‎ et al.
  • Cancer letters‎
  • 2015‎

Intermittent hypoxia (IH)-induces alterations in tumor-associated macrophages (TAMs) that are associated with adverse cancer outcomes, as reported in patients suffering from sleep apnea. Adipose tissues (AT) and bone-marrow (BM)-derived cells are the inferred sources of macrophages infiltrating malignant tumors. Here, the sources of TAMs and the phenotypic changes induced by IH in the ipsilateral and contralateral AT were investigated by using a syngeneic murine solid tumor model (TC1). C57/B6 male mice were exposed to either IH or room air (RA) for 6 weeks, with TC1 cells being inoculated in the 2nd week. Macrophage content, phenotype and tissue origin were assessed in tumors, and ipsilateral and contralateral AT. IH induced a ~2.2-fold increase in TAM tumor infiltration. However, differential responses in the tumor ipsilateral and contralateral AT emerged: IH increased infiltration of preferentially M1 macrophages in contralateral AT, while reductions in macrophages emerged in ipsilateral AT and primarily consisted of the M2 phenotype. These changes were accompanied by reciprocal increases in resident and BM-derived TAMs in the tumor. IH-induced phenotypic alterations in AT macrophages surrounding the tumor and their increased infiltration within the tumor may contribute to the accelerated tumor progression associated with IH.


Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice.

  • Valeriy A Poroyko‎ et al.
  • Scientific reports‎
  • 2016‎

Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF.


Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing.

  • Alba Carreras‎ et al.
  • Respiratory research‎
  • 2010‎

The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing.


Early-life physical activity reverses metabolic and Foxo1 epigenetic misregulation induced by gestational sleep disturbance.

  • Vesco Mutskov‎ et al.
  • American journal of physiology. Regulatory, integrative and comparative physiology‎
  • 2015‎

Sleep disorders are highly prevalent during late pregnancy and can impose adverse effects, such as preeclampsia and diabetes. However, the consequences of sleep fragmentation (SF) on offspring metabolism and epigenomic signatures are unclear. We report that physical activity during early life, but not later, reversed the increased body weight, altered glucose and lipid homeostasis, and increased visceral adipose tissue in offspring of mice subjected to gestational SF (SFo). The reversibility of this phenotype may reflect epigenetic mechanisms induced by SF during gestation. Accordingly, we found that the metabolic master switch Foxo1 was epigenetically misregulated in SFo livers in a temporally regulated fashion. Temporal Foxo1 analysis and its gluconeogenetic targets revealed that the epigenetic abnormalities of Foxo1 precede the metabolic syndrome phenotype. Importantly, regular physical activity early, but not later in life, reversed Foxo1 epigenetic misregulation and altered the metabolic phenotype in gestationally SF-exposed offspring. Thus, we have identified a restricted postnatal period during which lifestyle interventions may reverse the Foxo1 epigenetically mediated risk for metabolic dysfunction later in the life, as induced by gestational sleep disorders.


Hepatic expression of lipopolysaccharide-binding protein (Lbp) is induced by the gut microbiota through Myd88 and impairs glucose tolerance in mice independent of obesity.

  • Antonio Molinaro‎ et al.
  • Molecular metabolism‎
  • 2020‎

Gut-derived inflammatory factors can impair glucose homeostasis, but the underlying mechanisms are not fully understood. In this study, we investigated how hepatic gene expression is regulated by gut colonization status through myeloid differentiation primary response 88 (MYD88) and how one of the regulated genes, lipopolysaccharide-binding protein (Lbp), affects insulin signaling and systemic glucose homeostasis.


Activation of GFRAL+ neurons induces hypothermia and glucoregulatory responses associated with nausea and torpor.

  • Linda Engström Ruud‎ et al.
  • Cell reports‎
  • 2024‎

GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.


In vivo CRISPR editing with no detectable genome-wide off-target mutations.

  • Pinar Akcakaya‎ et al.
  • Nature‎
  • 2018‎

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1.

  • Ara Koh‎ et al.
  • Cell‎
  • 2018‎

Interactions between the gut microbiota, diet, and the host potentially contribute to the development of metabolic diseases. Here, we identify imidazole propionate as a microbially produced histidine-derived metabolite that is present at higher concentrations in subjects with versus without type 2 diabetes. We show that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using fecal microbiota from subjects with versus without type 2 diabetes and that it impairs glucose tolerance when administered to mice. We further show that imidazole propionate impairs insulin signaling at the level of insulin receptor substrate through the activation of p38γ MAPK, which promotes p62 phosphorylation and, subsequently, activation of mechanistic target of rapamycin complex 1 (mTORC1). We also demonstrate increased activation of p62 and mTORC1 in liver from subjects with type 2 diabetes. Our findings indicate that the microbial metabolite imidazole propionate may contribute to the pathogenesis of type 2 diabetes.


Chronic sleep fragmentation promotes obesity in young adult mice.

  • Yang Wang‎ et al.
  • Obesity (Silver Spring, Md.)‎
  • 2014‎

Short sleep confers a higher risk of obesity in humans. Restricted sleep increases appetite, promotes higher calorie intake from fat and carbohydrate sources, and induces insulin resistance. However, the effects of fragmented sleep (SF), such as occurs in sleep apnea, on body weight, metabolic rates, and adipose tissue distribution are unknown.


In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model.

  • Alba Carreras‎ et al.
  • BMC biology‎
  • 2019‎

Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles.


Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice.

  • Abdelnaby Khalyfa‎ et al.
  • Diabetes‎
  • 2014‎

Sleep fragmentation (SF) is a common condition among pregnant women, particularly during late gestation. Gestational perturbations promote the emergence of adiposity and metabolic disease risk in offspring, most likely through epigenetic modifications. Adiponectin (AdipoQ) expression inversely correlates with obesity and insulin resistance. The effects of SF during late gestation on metabolic function and AdipoQ expression in visceral white adipose tissue (VWAT) of offspring mice are unknown. Male offspring mice were assessed at 24 weeks after dams were exposed to SF or control sleep during late gestation. Increased food intake, body weight, VWAT mass, and insulin resistance, with reductions in AdipoQ expression in VWAT, emerged in SF offspring. Increased DNMT3a and -b and global DNA methylation and reduced histone acetyltransferase activity and TET1, -2, and -3 expression were detected in VWAT of SF offspring. Reductions in 5-hydroxymethylcytosine and H3K4m3 and an increase in DNA 5-methylcytosine and H3K9m2 in the promoter and enhancer regions of AdipoQ emerged in adipocytes from VWAT and correlated with AdipoQ expression. SF during late gestation induces epigenetic modifications in AdipoQ in male offspring mouse VWAT adipocytes along with a metabolic syndrome-like phenotype. Thus, altered gestational environments elicited by SF impose the emergence of adverse, long-lasting metabolic consequences in the next generation.


Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway.

  • Vijay Ramesh‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to the emergence of excessive daytime sleepiness and cognitive impairments in humans. Tumor necrosis factor (TNF)-α has important regulatory effects on sleep, and seems to play a role in the occurrence of excessive daytime sleepiness in children who have disrupted sleep as a result of obstructive sleep apnea, a condition associated with prominent sleep fragmentation. The aim of this study was to examine role of the TNF-α pathway after long-term sleep fragmentation in mice.


IDOL regulates systemic energy balance through control of neuronal VLDLR expression.

  • Stephen D Lee‎ et al.
  • Nature metabolism‎
  • 2019‎

Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: