Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Crystal structure of KLHL3 in complex with Cullin3.

  • Alan X Ji‎ et al.
  • PloS one‎
  • 2013‎

KLHL3 is a BTB-BACK-Kelch family protein that serves as a substrate adapter in Cullin3 (Cul3) E3 ubiquitin ligase complexes. KLHL3 is highly expressed in distal nephron tubules where it is involved in the regulation of electrolyte homeostasis and blood pressure. Mutations in KLHL3 have been identified in patients with inherited hypertension disorders, and several of the disease-associated mutations are located in the presumed Cul3 binding region. Here, we report the crystal structure of a complex between the KLHL3 BTB-BACK domain dimer and two copies of an N terminal fragment of Cul3. We use isothermal titration calorimetry to directly demonstrate that several of the disease mutations in the KLHL3 BTB-BACK domains disrupt the association with Cul3. Both the BTB and BACK domains contribute to the Cul3 interaction surface, and an extended model of the dimeric CRL3 complex places the two E2 binding sites in a suprafacial arrangement with respect to the presumed substrate-binding sites.


Sequence and structural analysis of BTB domain proteins.

  • Peter J Stogios‎ et al.
  • Genome biology‎
  • 2005‎

The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure.


Detergents for the stabilization and crystallization of membrane proteins.

  • Gilbert G Privé‎
  • Methods (San Diego, Calif.)‎
  • 2007‎

The use of detergents for the structural study of membrane proteins is discussed with an emphasis on practical issues relating to membrane solubilization, protein aggregation, detergent purity and detergent quantitation. Detergents are useful reagents as mimics of lipid bilayers because of their self-assembling properties, but as a result, they have complex properties in solution. It can be difficult to maintain a solubilized membrane protein in a native conformational state, and the non-specific aggregation of detergent-solubilized proteins is a common problem. Empirical "stability screens" can be helpful in choosing which detergents, and which detergent concentrations, may be optimal for a given system.


Expression, purification, crystallization, and preliminary X-ray analysis of recombinant human saposin B.

  • Victoria E Ahn‎ et al.
  • Protein expression and purification‎
  • 2003‎

Saposin B (also known as cerebroside sulfate activator or CSAct) is a small non-enzymatic glycoprotein required for the breakdown of cerebroside sulfates (sulfatides) in lysosomes. Saposin B contains three intramolecular disulfide bridges, exists as a dimer and is remarkably heat, protease, and pH stable. We have expressed the protein in a thioredoxin reductase deficient strain of Escherichia coli and purified the protein by heat treatment, followed by ion-exchange, gel filtration, and hydrophobic interaction chromatographies. The protein is properly folded as judged by the observed disulfide bond topology, the hydrogen-deuterium exchange rate, and the level of stimulation of sulfatide hydrolysis by arylsulfatase A. Crystals of human saposin B were grown by vapor diffusion and diffract to a resolution of 2.2A. Despite obtaining only merohedrally twinned P3(1) native crystals, an untwined seleomethionine-substituted crystal belonging to space group P3(1)21 was also grown. The three-dimensional structure of saposin B protein will provide insights into how this 79 amino acid protein is able to solubilize relatively large membrane-bound lipid ligands.


Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

  • Zi-Jian Xiong‎ et al.
  • Journal of molecular biology‎
  • 2016‎

Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction.


Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles.

  • Melissa R Marzahn‎ et al.
  • The EMBO journal‎
  • 2016‎

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export.

  • Saskia Heybrock‎ et al.
  • Nature communications‎
  • 2019‎

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.


Structures of RGL1 RAS-Association Domain in Complex with KRAS and the Oncogenic G12V Mutant.

  • Ben J Eves‎ et al.
  • Journal of molecular biology‎
  • 2022‎

Ral Guanine Nucleotide Dissociation Stimulator Like 1 (RGL1) is a RAS effector protein that activates Ral GTPase by stimulating nucleotide exchange. Most structures of RAS-effector complexes are for the HRAS isoform; relatively few KRAS-effector structures have been solved, even though KRAS mutations are more frequent in human cancers. We determined crystal structures of KRAS/RGL1-RAS-association (RA) domain complexes and characterized the interaction in solution using nuclear magnetic resonance spectroscopy, size-exclusion chromatography combined with multi-angle light scattering and biolayer interferometry. We report structures of wild-type KRAS and the oncogenic G12V mutant in complex with the RA domain of RGL1 at < 2 Å resolution. KRASWT/RGL1-RA crystallized as a 1:1 heterodimer, whilst KRASG12V/RGL1-RA crystallized as a heterotetrameric structure in which RGL1-RA dimerized via domain-swapping the C-terminal beta-strand. Solution data indicated that KRASWT and KRASG12V in complex with RGL1-RA both exist predominantly as 1:1 dimers, while tetramerization occurs through very slow association. Through detailed structural analyses, the distance and angle between RAS α1 helix and RBD/RA α1 helix were found to differ significantly among RAS and RBD/RA complexes. The KRAS/RGL1-RA structures possess some of the largest α1RAS/α1Effector distances (21.7-22.2 Å), whereas the corresponding distances in previously reported RAS/RAF complexes are significantly shorter (15.2-17.7 Å). Contact map analysis identified unique structural signatures involving contacts between the β1-β2 loop of RA and the α1 helix of RAS, clearly distinguishing the KRAS/RGL1-RA (and other RAS/RA complexes) from RAS/RBD complexes. These results demonstrate that RAS effectors employ an assortment of finely-tuned docking surfaces to achieve optimal interactions with RAS.


Crystal structures of human lysosomal EPDR1 reveal homology with the superfamily of bacterial lipoprotein transporters.

  • Yong Wei‎ et al.
  • Communications biology‎
  • 2019‎

EPDR1, a member of the ependymin-related protein family, is a relatively uncharacterized protein found in the lysosomes and secretomes of most vertebrates. Despite having roles in human disease and health, the molecular functions of EPDR1 remain unknown. Here, we present crystal structures of human EPDR1 and reveal that the protein adopts a fold previously seen only in bacterial proteins related to the LolA lipoprotein transporter. EPDR1 forms a homodimer with an overall shape resembling a half-shell with two non-overlapping hydrophobic grooves on the flat side of the hemisphere. EPDR1 can interact with membranes that contain negatively charged lipids, including BMP and GM1, and we suggest that EPDR1 may function as a lysosomal activator protein or a lipid transporter. A phylogenetic analysis reveals that the fold is more widely distributed than previously suspected, with representatives identified in all branches of cellular life.


The integrated landscape of driver genomic alterations in glioblastoma.

  • Veronique Frattini‎ et al.
  • Nature genetics‎
  • 2013‎

Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR1 function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in CTNND2 target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 being the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.


A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin.

  • Victoria E Ahn‎ et al.
  • The EMBO journal‎
  • 2004‎

The ability of enzymes to distinguish between fatty acyl groups can involve molecular measuring devices termed hydrocarbon rulers, but the molecular basis for acyl-chain recognition in any membrane-bound enzyme remains to be defined. PagP is an outer membrane acyltransferase that helps pathogenic bacteria to evade the host immune response by transferring a palmitate chain from a phospholipid to lipid A (endotoxin). PagP can distinguish lipid acyl chains that differ by a single methylene unit, indicating that the enzyme possesses a remarkably precise hydrocarbon ruler. We present the 1.9 A crystal structure of PagP, an eight-stranded beta-barrel with an unexpected interior hydrophobic pocket that is occupied by a single detergent molecule. The buried detergent is oriented normal to the presumed plane of the membrane, whereas the PagP beta-barrel axis is tilted by approximately 25 degrees. Acyl group specificity is modulated by mutation of Gly88 lining the bottom of the hydrophobic pocket, thus confirming the hydrocarbon ruler mechanism for palmitate recognition. A striking structural similarity between PagP and the lipocalins suggests an evolutionary link between these proteins.


Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine.

  • Atul S Deshmukh‎ et al.
  • Cell metabolism‎
  • 2019‎

Adipokines secreted from white adipose tissue play a role in metabolic crosstalk and homeostasis, whereas the brown adipose secretome is less explored. We performed high-sensitivity mass-spectrometry-based proteomics on the cell media of human adipocytes derived from the supraclavicular brown adipose and from the subcutaneous white adipose depots of adult humans. We identified 471 potentially secreted proteins covering interesting categories such as hormones, growth factors, extracellular matrix proteins, and proteins of the complement system, which were differentially regulated between brown and white adipocytes. A total of 101 proteins were exclusively quantified in brown adipocytes, and among these was ependymin-related protein 1 (EPDR1). EPDR1 was detected in human plasma, and functional studies suggested a role for EPDR1 in thermogenic determination during adipogenesis. In conclusion, we report substantial differences between the secretomes of brown and white human adipocytes and identify novel candidate batokines that can be important regulators of human metabolism.


The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG.

  • Eitan Kugler‎ et al.
  • Nature communications‎
  • 2023‎

The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.


PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler.

  • Jose Antonio Cuesta-Seijo‎ et al.
  • Structure (London, England : 1993)‎
  • 2010‎

Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 A crystal structure of PagP in an SDS / 2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.


Kelch-like homologue 9 mutation is associated with an early onset autosomal dominant distal myopathy.

  • Sebahattin Cirak‎ et al.
  • Brain : a journal of neurology‎
  • 2010‎

Distal myopathies are a heterogeneous group of disorders characterized by progressive weakness and muscular atrophy, beginning in distal limb muscles and affecting proximal limb muscles at a later stage. We studied a large German kindred with 10 affected members. Weakness and atrophy of the anterior tibial muscles started between the ages of 8 and 16 years, followed by atrophy of intrinsic hand muscles. Progression was slow, and patients retained the ability to walk until the seventh decade. Serum creatinine kinase levels were increased in the range of 150-1400 U/l. Muscle biopsies showed myopathic changes, whereas immunohistochemistry showed normal expression of marker proteins for muscular dystrophies. Patients had reduced sensation with stocking-glove distribution in the distal limbs in later life. Nerve conduction studies revealed no evidence of neuropathy. Genome-wide linkage analysis in this family revealed a new locus for distal myopathy at 9p21.2-p22.3 (multipoint logarithm of the odds ratio=4.21). By positional cloning we found a heterozygous mutation L95F in the Kelch-like homologue 9 gene, encoding a bric-a-brac Kelch protein. Molecular modelling indicated that the mutation may interfere with the interaction of the bric-a-brac domain with Cullin 3. Coimmunoprecipitation experiments confirmed that the mutation reduces association with Cullin 3 in the Kelch-like homologue 9-Cullin 3-E3 ubiquitin ligase complex, which is involved in ubiquitin-dependent protein degradation. We identified a unique form of early onset autosomal dominant distal myopathy which is associated with a Kelch-like homologue 9 mutation and interferes with normal skeletal muscle through a novel pathogenetic mechanism.


Protecting role of cosolvents in protein denaturation by SDS: a structural study.

  • Catherine Michaux‎ et al.
  • BMC structural biology‎
  • 2008‎

Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS). This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD), used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now.


TBL1XR1 Mutations Drive Extranodal Lymphoma by Inducing a Pro-tumorigenic Memory Fate.

  • Leandro Venturutti‎ et al.
  • Cell‎
  • 2020‎

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Systemic ceramide accumulation leads to severe and varied pathological consequences.

  • Abdulfatah M Alayoubi‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

Farber disease (FD) is a severe inherited disorder of lipid metabolism characterized by deficient lysosomal acid ceramidase (ACDase) activity, resulting in ceramide accumulation. Ceramide and metabolites have roles in cell apoptosis and proliferation. We introduced a single-nucleotide mutation identified in human FD patients into the murine Asah1 gene to generate the first model of systemic ACDase deficiency. Homozygous Asah1(P361R/P361R) animals showed ACDase defects, accumulated ceramide, demonstrated FD manifestations and died within 7-13 weeks. Mechanistically, MCP-1 levels were increased and tissues were replete with lipid-laden macrophages. Treatment of neonates with a single injection of human ACDase-encoding lentivector diminished the severity of the disease as highlighted by enhanced growth, decreased ceramide, lessened cellular infiltrations and increased lifespans. This model of ACDase deficiency offers insights into the pathophysiology of FD and the roles of ACDase, ceramide and related sphingolipids in cell signaling and growth, as well as facilitates the development of therapy.


Structural Insights into KCTD Protein Assembly and Cullin3 Recognition.

  • Alan X Ji‎ et al.
  • Journal of molecular biology‎
  • 2016‎

Cullin3 (Cul3)-based ubiquitin E3 ligase complexes catalyze the transfer of ubiquitin from an E2 enzyme to target substrate proteins. In these assemblies, the C-terminal region of Cul3 binds Rbx1/E2-ubiquitin, while the N-terminal region interacts with various BTB (bric-à-brac, tramtrack, broad complex) domain proteins that serve as substrate adaptors. Previous crystal structures of the homodimeric BTB proteins KLHL3, KLHL11 and SPOP in complex with the N-terminal domain of Cul3 revealed the features required for Cul3 recognition in these proteins. A second class of BTB-domain-containing proteins, the KCTD proteins, is also Cul3 substrate adaptors, but these do not share many of the previously identified determinants for Cul3 binding. We report the pentameric crystal structures of the KCTD1 and KCTD9 BTB domains and identify plasticity in the KCTD1 rings. We find that the KCTD proteins 5, 6, 9 and 17 bind to Cul3 with high affinity, while the KCTD proteins 1 and 16 do not have detectable binding. Finally, we confirm the 5:5 assembly of KCTD9/Cul3 complexes by cryo-electron microscopy and provide a molecular rationale for BTB-mediated Cul3 binding specificity in the KCTD family.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: