Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Different forms of glycine- and GABA(A)-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons.

  • Wayne B Anderson‎ et al.
  • Molecular pain‎
  • 2009‎

Neurons in superficial (SDH) and deep (DDH) laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR) and GABAA-receptors (GABAARs) contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits) in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood.


Effects of Ageing on the Mitochondrial Genome in Rat Vestibular Organs.

  • Mark J Bigland‎ et al.
  • Current aging science‎
  • 2018‎

Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for energy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process.


Expression and Physiology of Voltage-Gated Sodium Channels in Developing Human Inner Ear.

  • Rikki K Quinn‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Sodium channel expression in inner ear afferents is essential for the transmission of vestibular and auditory information to the central nervous system. During development, however, there is also a transient expression of Na+ channels in vestibular and auditory hair cells. Using qPCR analysis, we describe the expression of four Na+ channel genes, SCN5A (Nav1.5), SCN8A (Nav1.6), SCN9A (Nav1.7), and SCN10A (Nav1.8) in the human fetal cristae ampullares, utricle, and base, middle, and apex of the cochlea. Our data show distinct patterns of Na+ channel gene expression with age and between these inner ear organs. In the utricle, there was a general trend toward fold-change increases in expression of SCN8A, SCN9A, and SCN10A with age, while the crista exhibited fold-change increases in SCN5A and SCN8A and fold-change decreases in SCN9A and SCN10A. Fold-change differences of each gene in the cochlea were more complex and likely related to distinct patterns of expression based on tonotopy. Generally, the relative expression of SCN genes in the cochlea was greater than that in utricle and cristae ampullares. We also recorded Na+ currents from developing human vestibular hair cells aged 10-11 weeks gestation (WG), 12-13 WG, and 14+ WG and found there is a decrease in the number of vestibular hair cells that exhibit Na+ currents with increasing gestational age. Na+ current properties and responses to the application of tetrodotoxin (TTX; 1 μM) in human fetal vestibular hair cells are consistent with those recorded in other species during embryonic and postnatal development. Both TTX-sensitive and TTX-resistant currents are present in human fetal vestibular hair cells. These results provide a timeline of sodium channel gene expression in inner ear neuroepithelium and the physiological characterization of Na+ currents in human fetal vestibular neuroepithelium. Understanding the normal developmental timeline of ion channel gene expression and when cells express functional ion channels is essential information for regenerative technologies.


Molecular and Functional Changes to Postsynaptic Cholinergic Signaling in the Vestibular Sensory Organs of Aging C57BL/6 Mice.

  • Lauren A Poppi‎ et al.
  • The journals of gerontology. Series A, Biological sciences and medical sciences‎
  • 2023‎

Cholinergic circuits in the central nervous system are vulnerable to age-related functional decline, but it is not known if aging impacts cholinergic signaling in the vestibular sensory organs, which are critically important to balance maintenance and visual gaze stability. We have previously shown cholinergic neurotransmission between vestibular efferent terminals and type II mechanosensory hair cells requires the alpha9 (Chrna9) nicotinic receptor subunit. Homozygous knockout of the alpha9 subunit causes vestibulo-ocular reflex adaptation deficits that mirror those observed in aged mice. This prompted examination of cholinergic signaling in the vestibular sensory organs of aged mice. We confirmed older (>24 months) mice had impaired performance in a balance beam task compared to young (3-4 months) adult mice. While there was no qualitative loss of cholinergic axon varicosities in the crista ampullaris of old mice, qPCR analysis revealed reduced expression of nicotinic receptor subunit genes Chrna1, Chrna9, and Chrna10 in the cristae of old relative to young mice. Functionally, single-cell patch clamp recordings taken from type II vestibular hair cells exposed to acetylcholine show reduced conductance through alpha9/10 subunit-containing nicotinic receptors in older mice, despite preserved passive membrane properties and voltage-activated conductances. These findings suggest that cholinergic signaling in the peripheral vestibular sensory organs is vulnerable to aging processes, manifesting in dynamic molecular and functional age-related changes. Given the importance of these organs to our everyday activities, and the dramatic increase in fall incidence in the older, further investigation into the mechanisms of altered peripheral vestibular function in older humans is warranted.


Pioneers in CNS inhibition: 2. Charles Sherrington and John Eccles on inhibition in spinal and supraspinal structures.

  • Robert J Callister‎ et al.
  • Brain research‎
  • 2020‎

This article reviews the contributions of the English neurophysiologist, Charles Scott Sherrington [1857-1952], and his Australian PhD trainee and collaborator, John Carew Eccles [1903-1997], to the concept of central inhibition in the spinal cord and brain. Both were awarded Nobel Prizes; Sherrington in 1932 for "discoveries regarding the function of neurons," and Eccles in 1963 for "discoveries concerning the ionic mechanisms involved in excitation and inhibition in central portions of the nerve cell membrane." Both spoke about central inhibition at their Nobel Prize Award Ceremonies. The subsequent publications of their talks were entitled "Inhibition as a coordinative factor" and "The ionic mechanism of postsynaptic inhibition", respectively. Sherrington's work on central inhibition spanned 41 years (1893-1934), and for Eccles 49 years (1928-1977). Sherrington first studied central inhibition by observing hind limb muscle responses to electrical (peripheral nerve) and mechanical (muscle) stimulation. He used muscle length and force measurements until the early 1900s and electromyography in the late 1920s. Eccles used these techniques while working with Sherrington, but later employed extracellular microelectrode recording in the spinal cord followed in 1951 by intracellular recording from spinal motoneurons. This considerably advanced our understanding of central inhibition. Sherrington's health was poor during his retirement years but he nonetheless made a small number of largely humanities contributions up to 1951, one year before his death at the age of 94. In contrast, Eccles retained his health and vigor until 3 years before his death and published prolifically on many subjects during his 22 years of official retirement. His last neuroscience article appeared in 1994 when he was 91. Despite poor health he continued thinking about his life-long interest, the mind-brain problem, and was attempting to complete his autobiography in the last years of his life.


Crosstalk between mitochondria, calcium channels and actin cytoskeleton modulates noradrenergic activity of locus coeruleus neurons.

  • Ramatis B de Oliveira‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Locus coeruleus (LC) is the name of a group of large sized neurons located at the brain stem, which provides the main source of noradrenaline to the central nervous system, virtually, innervating the whole brain. All noradrenergic signalling provided by this nucleus is dependent on an intrinsic pacemaker process. Our study aims to understand how noradrenergic neurons finely tune their pacemaker processes and regulate their activities. Here we present that mitochondrial perturbation in the LC from mice, inhibits spontaneous firing by a hyperpolarizing response that involves Ca2+ entry via L-type Ca2+ channels and the actin cytoskeleton. We found that pharmacological perturbation of mitochondria from LC neurons using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), induced a dominant hyperpolarizing response when electrophysiological approaches were performed. Surprisingly, the CCCP-induced hyperpolarizing response was dependent on L-type Ca2+ channel-mediated Ca2+ entry, as it was inhibited by: the removal of extracellular Ca2+ ; the addition of Cd2+ ; nifedipine or nicardipine; but not by the intracellular dialysis with the Ca2+ chelator 1,2-Bis(2-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the latter indicating that the response was not because of a global change in [Ca2+ ]c but does not exclude action at intracellular microdomains. Further to this, the incubation of slices with cytochalasin D, an agent that depolymerises the actin cytoskeleton, inhibited the hyperpolarizing response indicating an involvement of the actin cytoskeleton. The data are consistent with the hypothesis that there is a crosstalk between mitochondria and L-type Ca2+ channels leading to modulation of noradrenergic neuronal activity mediated by the actin cytoskeleton. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

  • Lauren A Poppi‎ et al.
  • Journal of neurophysiology‎
  • 2018‎

In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9-/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.


The Long and Winding Road-Vestibular Efferent Anatomy in Mice.

  • David Lorincz‎ et al.
  • Frontiers in neural circuits‎
  • 2021‎

The precise functional role of the Efferent Vestibular System (EVS) is still unclear, but the auditory olivocochlear efferent system has served as a reasonable model on the effects of a cholinergic and peptidergic input on inner ear organs. However, it is important to appreciate the similarities and differences in the structure of the two efferent systems, especially within the same animal model. Here, we examine the anatomy of the mouse EVS, from its central origin in the Efferent Vestibular Nucleus (EVN) of the brainstem, to its peripheral terminations in the vestibular organs, and we compare these findings to known mouse olivocochlear anatomy. Using transgenic mouse lines and two different tracing strategies, we examine central and peripheral anatomical patterning, as well as the anatomical pathway of EVS axons as they leave the mouse brainstem. We separately tag the left and right efferent vestibular nuclei (EVN) using Cre-dependent, adeno-associated virus (AAV)-mediated expression of fluorescent reporters to map their central trajectory and their peripheral terminal fields. We couple this with Fluro-Gold retrograde labeling to quantify the proportion of ipsi- and contralaterally projecting cholinergic efferent neurons. As in some other mammals, the mouse EVN comprises one group of neurons located dorsal to the facial genu, close to the vestibular nuclei complex (VNC). There is an average of just 53 EVN neurons with rich dendritic arborizations towards the VNC. The majority of EVN neurons, 55%, project to the contralateral eighth nerve, crossing the midline rostral to the EVN, and 32% project to the ipsilateral eighth nerve. The vestibular organs, therefore, receive bilateral EVN innervation, but without the distinctive zonal innervation patterns suggested in gerbil. Similar to gerbil, however, our data also suggest that individual EVN neurons do not project bilaterally in mice. Taken together, these data provide a detailed map of EVN neurons from the brainstem to the periphery and strong anatomical support for a dominant contralateral efferent innervation in mammals.


Aged mice are less susceptible to motion sickness and show decreased efferent vestibular activity compared to young adults.

  • David Lorincz‎ et al.
  • Brain and behavior‎
  • 2023‎

The efferent vestibular system (EVS) is a feedback circuit thought to modulate vestibular afferent activity by inhibiting type II hair cells and exciting calyx-bearing afferents in the peripheral vestibular organs. In a previous study, we suggested EVS activity may contribute to the effects of motion sickness. To determine an association between motion sickness and EVS activity, we examined the effects of provocative motion (PM) on c-Fos expression in brainstem efferent vestibular nucleus (EVN) neurons that are the source of efferent innervation in the peripheral vestibular organs.


Heterogeneous responses to antioxidants in noradrenergic neurons of the Locus coeruleus indicate differing susceptibility to free radical content.

  • Ramatis B de Oliveira‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2012‎

The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca(2+) concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca(2+)-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: