Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism.

  • Hao Wang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The aim of the present study was to explore the function and interaction of differentially expressed genes (DEGs) in pulmonary embolism (PE). The gene expression profile GSE13535, was downloaded from the Gene Expression Omnibus database. The DEGs 2 and 18 h post‑PE initiation were identified using the affy package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs were analyzed using Database for Annotation Visualization and Integrated Discovery (DAVID) online analytical tools. In addition, protein‑protein interaction (PPI) networks of the DEGs were constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins. The PPI network at 18 h was modularized using Clusterone, and a functional enrichment analysis of the DEGs in the top three modules was performed with DAVID. Overall, 80 and 346 DEGs were identified 2 and 18 h after PE initiation, respectively. The KEGG pathways, including chemokine signaling and toll‑like receptor signaling, were shown to be significantly enriched. The five highest degree nodes in the PPI networks at 2 or 18 h were screened. The module analysis of the PPI network at 18 h revealed 11 hub nodes. A Gene Ontology terms analysis demonstrated that the DEGs in the top three modules were associated with the inflammatory, defense and immune responses. The results of the present study suggest that the DEGs identified, including chemokine‑related genes TFPI2 and TNF, may be potential target genes for the treatment of PE. The chemokine signaling pathway, inflammatory response and immune response were explored, and it may be suggested that these pathways have important roles in PE.


A three‑lncRNA signature for prognosis prediction of acute myeloid leukemia in patients.

  • Fangce Wang‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Long non-coding RNAs (lncRNAs) are transcripts characterized by >200 nucleotides, without validated protein production. Previous studies have demonstrated that certain lncRNAs have a critical role in the initiation and development of acute myeloid leukemia (AML). In the present study, the subtype‑specific lncRNAs in AML was identified. Following the exclusion of the subtype‑specific lncRNAs, the prognostic value of lncRNAs was investigated and a three‑lncRNA expression‑based risk score [long intergenic non‑protein coding RNA 926, family with sequence similarity 30 member A and LRRC75A antisense RNA 1 (LRRC75A‑AS1)] was developed for AML patient prognosis prediction by analyzing the RNA‑seq data of AML patients from Therapeutically Available Research to Generate Effective Treatments (TARGET) and The Cancer Genome Atlas (TCGA) projects. In the training set obtained from TARGET, patients were divided into poor and favorable prognosis groups by the median risk score. The prognostic effectiveness of this lncRNA risk score was confirmed in the validation set obtained from TCGA by the same cut‑off. Furthermore, the lncRNA risk score was identified as an independent prognostic factor in the multivariate analysis. As further verification of the independent prognostic power of the lncRNA risk score, stratified analysis was performed by a cytogenetics risk group and revealed a consistent result. The prognostic predictive ability of the risk score was compared with the cytogenetics risk group by time‑dependent receiver operating characteristic curves analysis. It was revealed that the combination of the lncRNA risk score and cytogenetics risk group provided a higher prognostic value than a single prognostic factor. The present study also performed co‑expression analysis to predict the potential regulatory mechanisms of these lncRNAs in a cis/trans/competing endogenous RNA manner. The results suggested that LRRC75A‑AS1 was highly associated with the target genes of transcription factors tumor protein 53 and ETS variant 6. Overall, these results highlighted the use of the three‑lncRNA expression‑based risk score as a potential molecular biomarker to predict the prognosis in AML patients.


Checkpoint kinase‑1 inhibition and etoposide exhibit a strong synergistic anticancer effect on chronic myeloid leukemia cell line K562 by impairing homologous recombination DNA damage repair.

  • Zhuoyi Fan‎ et al.
  • Oncology reports‎
  • 2020‎

Leukemia, a malignant hematological disease, has poor therapeutic outcomes due to chemotherapeutic resistance. Increasing evidence has confirmed that the elevated capacity for DNA damage repair in cancer cells is a major mechanism of acquired chemotherapeutic resistance. Thus, combining chemotherapy with inhibitors of DNA damage repair pathways is potentially an ideal strategy for treating leukemia. Checkpoint kinase 1 (CHK1) is an important component of the DNA damage response (DDR) and is involved in the G2/M DNA damage checkpoint. In the present study, we demonstrated that shRNA‑mediated CHK1 silencing suppressed cell proliferation and enhanced the cytotoxic effects of etoposide (VP16) in the chronic myeloid leukemia (CML) cell line K562 through the results of CCK‑8, and comet assay. The results demonstrated that shRNA‑induced CHK1 silencing can override G2/M arrest and impair homologous recombination (HR) repair by reducing breast cancer susceptibility gene 1 (BRCA1) expression. Cells had no time, and thus limited ability, to repair the damage and were thus more sensitive to chemotherapy after CHK1 downregulation. Second, we tested the therapeutic effect of VP16 combined with CCT245737, an orally bioavailable CHK1 inhibitor, and observed strong synergistic anticancer effects in K562 cells. Moreover, we discovered that CCT245737 significantly prevented the G2/M arrest caused by acute exposure to VP16. Interestingly, CCT245737 inhibited both BRCA1 and Rad51, the most important component of the HR repair pathway. In conclusion, these results revealed that CHK1 is potentially an ideal therapeutic target for the treatment of CML and that CCT245737 should be considered a candidate drug.


Predictive value of serological factors, maximal standardized uptake value and ratio of Ki67 in patients diagnosed with non-Hodgkin's lymphoma.

  • Jinyuan Lu‎ et al.
  • Oncology letters‎
  • 2020‎

The present study aimed to determine the prognostic value of serological factors, positron emission tomography/computed tomography maximal standardized uptake value (SUVmax) and the immunohistochemical index ratio of Ki67 (Ki67%) for patients diagnosed with non-Hodgkin's lymphoma (NHL). A total of 120 patients with NHL who received regular chemotherapy and underwent serological, radiological and pathological examinations at Shanghai Tongji Hospital between July 2015 and March 2019 were retrospectively analyzed. Spearman's correlation analysis was preformed to describe the associations between different categories of indicators. Kaplan-Meier analysis and log-rank test were used to compare the survival of different subgroups. Receiver operating characteristic curves were generated to assess the predictive value of prominent indicators derived from Cox regression analysis. The results indicated that inflammatory cytokines were strongly associated with tumor burden indicators. The correlation between SUVmax and Ki67% was significant, and SUVmax of the biopsy site exhibited a stronger association with Ki67% (Ρ=0.529, P<0.001) compared with SUVmax of the whole body (Ρ=0.395, P=0.017). C-reactive protein (CRP), lactate dehydrogenase (LDH) and interleukin-6 could differentiate the survival status of patients with NHL, whereas no statistical significance in the estimation of overall survival (OS) was obtained for SUVmax and Ki67%. SUVmax of the biopsy site had only a limited value in the estimation of progression-free survival (PFS), whereas LDH, β2-microglobulin (β2-mg) and CRP were independent predictors of both OS and PFS with high sensitivity and specificity. Among all indicators, CRP and β2-mg could predict both survival status and complete remission of patients with NHL, whereas the prognostic value of SUVmax and Ki67% requires further study and discussion.


Reduced expression of BMP3 contributes to the development of pulmonary fibrosis and predicts the unfavorable prognosis in IIP patients.

  • Xiaoting Yu‎ et al.
  • Oncotarget‎
  • 2017‎

Idiopathic pulmonary fibrosis (IPF) and idiopathic nonspecific interstitial pneumonia (INSIP) are two related diseases involving varying degrees of pulmonary fibrosis with no effective cure. Bone morphogenetic protein 3 (BMP3) is a member of the transforming growth factor-β (TGF-β) super-family, which has not been implicated in pulmonary fibrosis previously. In this study, we aimed to investigate the potential role of BMP3 playing in pulmonary fibrosis from clinical diagnosis to molecular signaling regulation. RNA sequencing was performed to explore the potential biomarker of IIP patients. The expression of BMP3 was evaluated in 83 cases of IPF and INSIP by immunohistochemistry. The function of BMP3 was investigated in both fibroblast cells and a bleomycin-induced murine pulmonary fibrosis model. The clinical relevance of BMP3 expression were analyzed in 47 IIP patients, which were included in 83 cases and possess more than five-year follow-up data. Both RNA-sequencing and immunohistochemistry staining revealed that BMP3 was significantly down-regulated in lung tissues of patients with IPF and INSIP. Consistently, lower expression of BMP3 also was found in pulmonary fibrotic tissues of bleomycin-induced mice model. Up-regulation of BMP3 prevented pulmonary fibrosis processing through inhibiting cellular proliferation of fibroblasts as well as TGF-β1 signal transduction. Finally, the relatively higher expression of BMP3 in IPF patients was associated with less/worse mortality. Intravenous injection of recombinant BMP3. Taken together, our results suggested that the low expression level of BMP3 may indicate the unfavorable prognosis of IPF patients, targeting BMP3 may represent a novel potential therapeutic method for pulmonary fibrosis management.


SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells.

  • Wenjun Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Most chemotherapeutic agents for leukemia are DNA damaging agents. However, DNA lesions can be repaired by activities of DNA repair systems. Increasing evidence have shown that enhanced DNA damage repair capacity contributes to chemotherapy resistance in leukemia cells. Thus, targeting DNA repair mechanisms is a promising strategy for novel leukemia treatment. SIRT1 expressions were downregulated by lentivirus-delivered SIRT1 shRNA in myeloid leukemia cells. SIRT1 mRNA and protein levels were analyzed by real-time PCR and Western blot, respectively. Flow cytometry was carried out to analyze cell cycle progression, apoptosis and DNA damage repair efficiency. DNA damage levels were assessed by alkaline comet assay, and H2AX phosphorylation was analyzed by immunoblotting and immunofluorescence. A mouse leukemia model was established by transplanting lentivirus-infected K562 cells containing SIRT1 shRNA into sublethally irradiated NOD/SCID mice, and tumorigenesis was evaluated by detecting tumor weights and mice survival. SIRT1 expressions were upregulated in myeloid leukemic patients. Downregulation of SIRT1 by RNAi promoted etoposide-induced DNA damage in myeloid leukemia cells accompanied by reduced NHEJ activity, and increased Ku70 acetylation. Furthermore, SIRT1 knockdown resulted in cell cycle arrest, induction of apoptosis and reduction of K562 cell proliferation accompanied by enhanced p53 and FOXO1 acetylation in K562 cells after etoposide treatment. Importantly, SIRT1 downregulation reduced the tumorigenesis ability of K562 cells in mouse xenografts following chemotherapy treatment. These results revealed that SIRT1 promotes the NHEJ repair pathway by deacetylating Ku70 in K562 cells, suggesting that SIRT1 is a novel therapeutic target for treating myeloid leukemia.


MicroRNA-181b-5p insufficiency predicts treatment response failure risk and unfavorable event-free survival as well as overall survival in acute myeloid leukemia patients.

  • Huina Lu‎ et al.
  • Oncology letters‎
  • 2022‎

The present study aimed to explore the correlation of microRNA (miR)-181b-5p expression with treatment response and long-term prognosis in acute myeloid leukemia (AML) patients. miR-181b-5p was detected in the bone marrow of 84 AML patients before therapy. After induction therapy, the patients exhibiting complete remission (CR) were recorded. Next, event-free survival (EFS) and overall survival (OS) were calculated. miR-181b-5p had excellent potential to discriminate AML patients from healthy donors [area under the curve (AUC): 0.922, 95% confidence interval (CI): 0.873-0.971)]. In addition, miR-181b-5p expression was decreased in AML patients with the FLT3-ITD mutation (P=0.032) or WT1 mutation (P=0.017) when compared to AML patients without these genetic mutations. Meanwhile, miR-181b-5p expression was negatively correlated with the National Comprehensive Cancer Network (NCCN) risk classification of AML (P=0.036). Furthermore, miR-181b-5p expression was elevated in CR AML patients compared to non-CR AML patients (P=0.030). Moreover, higher miR-181b-5p expression was associated with favorable accumulating EFS (P=0.001) and OS (P=0.024). In addition, higher miR-181b-5p expression was independently associated with better EFS (hazard ratio: 0.698, P=0.012). In conclusion, miR-181b-5p insufficiency is associated with induction therapy response failure, unfavorable accumulating EFS and OS in AML patients.


PPARγ phase separates with RXRα at PPREs to regulate target gene expression.

  • Zhean Li‎ et al.
  • Cell discovery‎
  • 2022‎

Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.


Immunoglobulin isotype switch after anti-BCMA CAR T-cell therapy for relapsed or refractory multiple myeloma.

  • Zhiyu Liang‎ et al.
  • Blood advances‎
  • 2022‎

No abstract available


Decitabine in patients with myelodysplastic syndromes: A multi-center, open-label, dose comparison trial.

  • Hui Liu‎ et al.
  • Cancer medicine‎
  • 2023‎

The hypomethylating agent decitabine is the standard therapy for intermediate or high risk myelodysplastic syndrome (MDS).


ATM modulates subventricular zone neural stem cell maintenance and senescence through Notch signaling pathway.

  • Chuanming Dong‎ et al.
  • Stem cell research‎
  • 2022‎

Ataxia telangiectasia mutated (ATM) plays an essential role in DNA damage response and the maintenance of genomic stability. However, the role of ATM in regulating the function of adult neural stem cells (NSCs) remains unclear. Here we report that ATM deficiency led to accumulated DNA damage and decreased DNA damage repair capacity in neural progenitor cells. Moreover, we observed ATM ablation lead to the short-term increase of proliferation of neural progenitor cells, resulting in the depletion of the NSC pool over time, and this loss of NSC quiescence resulted in accelerated cell senescence. We further apply RNA sequencing to unravel that ATM knockout significantly affected Notch signaling pathway, furthermore, notch activation inhibit the abnormal increased proliferation of ATM-/- NSCs. Taken together, these findings indicate that ATM can serve as a key regulator for the normal function of adult NSCs by maintaining their stemness and preventing cellular senescence primarily through Notch signaling pathway.


Inhibition of DEK Enhances Doxorubicin-Induced Apoptosis and Cell Cycle Arrest in T-Cell Acute Lymphoblastic Leukemia Cells.

  • Xiaoxue Tian‎ et al.
  • Disease markers‎
  • 2022‎

T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematological tumor derived from early T-cell progenitors, which is extremely resistant to chemotherapy. Classically, doxorubicin (DOX) is an effective first-line drug for the treatment of T-ALL; however, DOX resistance limits its clinical effect. The DEK proto-oncogene (DEK) has been involved in neoplasms but remains unexplored in T-ALL. We silenced DEK on Jurkat cells and detected cell proliferation with cell counting and colony formation assay. Then, we detected DEK's drug sensitivity to DOX with CCK-8, cell cycle, and apoptosis with DOX treatment. Western blot analysis was performed to determine protein expression of apoptosis and cell cycle-related genes, including BCL2L1, caspase-3, and cyclin-dependent kinases (CDK). Finally, the tumorigenic ability of DEK was analyzed using a BALB/C nude mouse model. In this study, DEK was highly expressed in Jurkat cells. Inhibition of DEK can lead to decreased cell proliferation and proportion of S-phase cells in the cell cycle and more cell apoptosis, and the effect is more obvious after DOX treatment. Western blot results showed that DOX treatment leads to cell cycle arrest, reduction of cyclin-dependent kinase 6 (CDK6) protein, accumulation of CDKN1A protein, and DOX-induced apoptosis accompanied by reductions in protein levels of BCL2L1, as well as increases in protein level of caspase-3. Furthermore, DEK-silenced Jurkat cells generated a significantly smaller tumor mass in mice. Our study found that DEK is a novel, potential therapeutic target for overcoming DOX resistance in T-ALL.


Treatment-Related Adverse Events of Chimeric Antigen Receptor T-Cell (CAR T) in Clinical Trials: A Systematic Review and Meta-Analysis.

  • Wen Lei‎ et al.
  • Cancers‎
  • 2021‎

Chimeric antigen receptors T (CAR-T) cell therapy of cancer is a rapidly evolving field. It has been shown to be remarkably effective in cases of hematological malignancies, and its approval by the FDA has significantly increased the enthusiasm for wide clinical usage and development of novel CAR-T therapies. However, it has also challenged physicians and investigators to recognize and deal with treatment-associated toxicities. A total of 2592 patients were included from 84 eligible studies that were systematically searched and reviewed from the databases of PubMed, de, the American Society of Hematology and the Cochrane Library. The meta-analysis and subgroup analysis by a Bayesian logistic regression model were used to evaluate the incidences of therapy-related toxicities such as cytokine release syndrome (CRS) and neurological symptoms (NS), and the differences between different targets and cancer types were analyzed. The pooled all-grade CRS rate and grade ≥ 3 CRS rate was 77% and 29%, respectively, with a significantly higher incidence in the hematologic malignancies (all-grade: 81%; grade ≥ 3: 29%) than in solid tumors (all-grade: 37%; grade ≥ 3: 19%). The pooled estimate NS rate from the individual studies were 40% for all-grade and 28% for grade ≥ 3. It was also higher in the hematologic subgroup than in the solid tumors group. The subgroup analysis by cancer type showed that higher incidences of grade ≥ 3 CRS were observed in anti-CD19 CAR-T therapy for ALL and NHL, anti-BCMA CAR-T for MM, and anti-CEA CAR-T for solid tumors, which were between 24-36%, while higher incidences of grade ≥ 3 NS were mainly observed in CD19-ALL/NHL (23-37%) and BCMA-MM (12%). Importantly, subgroup analysis on anti-CD19 CAR-T studies showed that young patients (vs. adult patients), allologous T cell origin (vs. autologous origin), gamma retrovirus vector, and higher doses of CAR-T cells were associated with high-grade CRS. On the other hand, the patients with NHL (vs ALL), administered with higher dose of CAR-T, and adult patients (vs. young patients) had an increased incidence of grade ≥ 3 NS events. This study offers a comprehensive summary of treatment-related toxicity and will guide future clinical trials and therapeutic designs investigating CAR T cell therapy.


Targeting RAD51 enhances chemosensitivity of adult T‑cell leukemia‑lymphoma cells by reducing DNA double‑strand break repair.

  • Meng Yang‎ et al.
  • Oncology reports‎
  • 2019‎

RAD51, is a key homologous recombination protein that repairs DNA damage and maintains gene diversity and stability. Previous studies have demonstrated that the over‑expression of RAD51 is associated with chemotherapy resistance of tumor cells to chemotherapy, and enhanced activity of DNA damage repair (DDR) systems contributes to resistance of adult T‑cell leukemia‑lymphoma (ATL) resistance to chemotherapy. Thus, targeting RAD51 is a potential strategy for the sensitization of ATL cells to chemotherapeutic drugs by inducing DNA damage. In general, cells can repair minor DNA damage through DDR; however, serious DNA damage may cause cell toxicity in cells which cannot be restored. In the present, down regulation of RAD51 by shRNA and imatinib sensitized Jurkat cells to etoposide by decreasing the activity of homologous recombination (HR). We found that the suppression of RAD51 by shRNA inhibited tumor cells proliferation and enhanced apoptosis of Jurkat cells after etoposide treatment. Importantly, downregulation of RAD51 by imatinib obviously increased the apoptosis of Jurkat cell after etoposide treatment. These results demonstrated that RAD51 may be of great value to as a novel target for the clinical treatment of adult T‑cell leukemia‑lymphoma (ATL), and it may improve the survival of leukemia patients.


Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLL‑AF9 translocation.

  • Fangce Wang‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Rearrangement of the mixed lineage leukemia (MLL; also known as lysine methyltransferase 2A) gene is a recurrent genomic aberration in acute myeloid leukemia (AML). MLLT3, super elongation complex subunit (AF9) is one of the most common MLL fusion partners in AML. The present study aimed to explore the aberrant expression of genes associated with the MLL‑AF9 translocation and identified potential new targets for the therapy of AML with MLL‑AF9 translocation. The transcriptomic and epigenetic datasets were downloaded from National Center of Biotechnology Information Gene Expression Omnibus (GEO) database. Differentially expressed genes were obtained from two independent datasets (GSE68643 and GSE73457). Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. MLL‑AF9‑associated chromatin immunoprecipitation sequencing (ChIP‑Seq) data was analyzed and identified binding sites for MLL‑AF9 and wild type MLL (MLL WT). The ChIP‑Seq of histone modification data was downloaded from the GEO database, including histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 79 dimethylation (H3K79me2) and histone 3 lysine 27 acetylation (H3K27ac), was used for comparing histone modification marks between the MLL‑AF9 leukemia cells and normal hematopoietic cells at MLL‑AF9 and MLL WT binding sites. The differentially expressed genes with the same trend in H3K79me2, H3K27ac and H3K4me3 alteration were identified as potential MLL‑AF9 direct target genes. Upon validation using RNA‑Seq data from the Therapeutically Applicable Research to Generate Effective Treatments AML project, eight potential direct target genes of MLL‑AF9 were identified and further confirmed in MLL‑AF9 mouse model using reverse transcription‑quantitative polymerase chain reaction. These genes may have a critical role in AML with MLL‑AF9 translocation.


Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.

  • Wenxia Yu‎ et al.
  • BMC biology‎
  • 2021‎

Site-specific C>T DNA base editing has been achieved by recruiting cytidine deaminases to the target C using catalytically impaired Cas proteins; the target C is typically located within 5-nt editing window specified by the guide RNAs. The prototypical cytidine base editor BE3, comprising rat APOBEC1 (rA1) fused to nCas9, can indiscriminately deaminate multiple C's within the editing window and also create substantial off-target edits on the transcriptome. A powerful countermeasure for the DNA off-target editing is to replace rA1 with APOBEC proteins which selectively edit C's in the context of specific motifs, as illustrated in eA3A-BE3 which targets TC. However, analogous editors selective for other motifs have not been described. In particular, it has been challenging to target a particular C in C-rich sequences. Here, we sought to confront this challenge and also to overcome the RNA off-target effects seen in BE3.


Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model.

  • Fei Zhou‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Growing evidence has brought stem cell therapy to the forefront as new promising approaches towards stroke treatment. Of all candidate seeding cells, adipose-derived stem cells (ADSCs) are considered as one of the most appropriate for stroke treatment. However, previous experimental data could not reach to an agreement on the efficacy of ADSC transplantation for treating stroke in vivo as well as its mechanism which hinders their further clinical translational application.


Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys.

  • Yongchang Chen‎ et al.
  • Cell‎
  • 2017‎

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals.

  • Dongguang Li‎ et al.
  • Nature communications‎
  • 2020‎

Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies. Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with high diagnostic accuracy equal or close to 100 percent to guide treatment options, but this requirement is difficult to meet. Although artificial intelligence (AI) helps to reduce the labor of reading pathologic slides, diagnostic accuracy has not reached a clinically usable level. Establishment of an AI model often demands big datasets and an ability to handle large variations in sample preparation and image collection. Here, we establish a highly accurate deep learning platform, consisting of multiple convolutional neural networks, to classify pathologic images by using smaller datasets. We analyze human diffuse large B-cell lymphoma (DLBCL) and non-DLBCL pathologic images from three hospitals separately using AI models, and obtain a diagnostic rate of close to 100 percent (100% for hospital A, 99.71% for hospital B and 100% for hospital C). The technical variability introduced by slide preparation and image collection reduces AI model performance in cross-hospital tests, but the 100% diagnostic accuracy is maintained after its elimination. It is now clinically practical to utilize deep learning models for diagnosis of DLBCL and ultimately other human hematopoietic malignancies.


Whole Transcriptome Data Analysis Reveals Prognostic Signature Genes for Overall Survival Prediction in Diffuse Large B Cell Lymphoma.

  • Mengmeng Pan‎ et al.
  • Frontiers in genetics‎
  • 2021‎

With the improvement of clinical treatment outcomes in diffuse large B cell lymphoma (DLBCL), the high rate of relapse in DLBCL patients is still an established barrier, as the therapeutic strategy selection based on potential targets remains unsatisfactory. Therefore, there is an urgent need in further exploration of prognostic biomarkers so as to improve the prognosis of DLBCL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: