Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

gamma-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter.

  • Lina Enell‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in insects and is widely distributed in the central nervous system (CNS). GABA acts on ion channel receptors (GABA(A)R) for fast inhibitory transmission and on G-protein-coupled ones (GABA(B)R) for slow and modulatory action. We used immunocytochemistry to map GABA(B)R sites in the Drosophila CNS and compared the distribution with that of the GABA(A)R subunit RDL. To identify GABAergic synapses, we raised an antiserum to the vesicular GABA transporter (vGAT). For general GABA distribution, we utilized an antiserum to glutamic acid decarboxylase (GAD1) and a gad1-GAL4 to drive green fluorescent protein. GABA(B)R-immunoreactive (IR) punctates were seen in specific patterns in all major neuropils of the brain. Most abundant labeling was seen in the mushroom body calyces, ellipsoid body, optic lobe neuropils, and antennal lobes. The RDL distribution is very similar to that of GABA(B)R-IR punctates. However, the mushroom body lobes displayed RDL-IR but not GABA(B)R-IR material, and there were subtle differences in other areas. The vGAT antiserum labeled punctates in the same areas as the GABA(B)R and appeared to display presynaptic sites of GABAergic neurons. Various GAL4 drivers were used to analyze the relation between GABA(B)R distribution and identified neurons in adults and larvae. Our findings suggest that slow GABA transmission is very widespread in the Drosophila CNS and that fast RDL-mediated transmission generally occurs at the same sites.


Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system.

  • Agata Kolodziejczyk‎ et al.
  • PloS one‎
  • 2008‎

Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: