Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Host-range restriction of vaccinia virus E3L deletion mutant can be overcome in vitro, but not in vivo, by expression of the influenza virus NS1 protein.

  • Susana Guerra‎ et al.
  • PloS one‎
  • 2011‎

During the last decades, research focused on vaccinia virus (VACV) pathogenesis has been intensified prompted by its potential beneficial application as a vector for vaccine development and anti-cancer therapies, but also due to the fear of its potential use as a bio-terrorism threat. Recombinant viruses lacking a type I interferon (IFN) antagonist are attenuated and hence good vaccine candidates. However, vaccine virus growth requires production in IFN-deficient systems, and thus viral IFN antagonists that are active in vitro, yet not in vivo, are of great value. The VACV E3 and influenza virus NS1 proteins are distinct double-stranded RNA-binding proteins that play an important role in pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. Based on the functional similarities between E3 and NS1, we investigated the ability of NS1 to replace the biological functions of E3 of VACV in both in vitro and in vivo systems. For this, we generated a VACV recombinant virus lacking the E3L gene, yet expressing NS1 (VVΔE3L/NS1). Our study revealed that NS1 can functionally replace E3 in cultured cells, rescuing the protein synthesis blockade, and preventing apoptosis and RNA breakdown. In contrast, in vivo the VVΔE3L/NS1 virus was highly attenuated after intranasal inoculation, as it was unable to spread to the lungs and other organs. These results indicate that there are commonalities but also functional differences in the roles of NS1 and E3 as inhibitors of the innate antiviral response, which could potentially be utilized for vaccine production purposes in the future.


A transient homotypic interaction model for the influenza A virus NS1 protein effector domain.

  • Philip S Kerry‎ et al.
  • PloS one‎
  • 2011‎

Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins.


Comparison of Heterologous Prime-Boost Strategies against Human Immunodeficiency Virus Type 1 Gag Using Negative Stranded RNA Viruses.

  • Tessa M Lawrence‎ et al.
  • PloS one‎
  • 2013‎

This study analyzed a heterologous prime-boost vaccine approach against HIV-1 using three different antigenically unrelated negative-stranded viruses (NSV) expressing HIV-1 Gag as vaccine vectors: rabies virus (RABV), vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV). We hypothesized that this approach would result in more robust cellular immune responses than those achieved with the use of any of the vaccines alone in a homologous prime-boost regimen. To this end, we primed BALB/c mice with each of the NSV-based vectors. Primed mice were rested for thirty-five days after which we administered a second immunization with the same or heterologous NSV-Gag viruses. The magnitude and quality of the Gag-specific CD8(+) T cells in response to these vectors post boost were measured. In addition, we performed challenge experiments using vaccinia virus expressing HIV-1 Gag (VV-Gag) thirty-three days after the boost inoculation. Our results showed that the choice of the vaccine used for priming was important for the detected Gag-specific CD8(+) T cell recall responses post boost and that NDV-Gag appeared to result in a more robust recall of CD8(+) T cell responses independent of the prime vaccine used. However, the different prime-boost strategies were not distinct for the parameters studied in the challenge experiments using VV-Gag but did indicate some benefits compared to single immunizations. Taken together, our data show that NSV vectors can individually stimulate HIV-Gag specific CD8(+) T cells that are effectively recalled by other NSV vectors in a heterologous prime-boost approach. These results provide evidence that RABV, VSV and NDV can be used in combination to develop vaccines needing prime-boost regimens to stimulate effective immune responses.


Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

  • Olivo Miotto‎ et al.
  • PloS one‎
  • 2010‎

There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H) transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates.


Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection.

  • Raquel Muñoz-Moreno‎ et al.
  • PloS one‎
  • 2016‎

The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV.


Effect of cholecalciferol supplementation on inflammation and cellular alloimmunity in hemodialysis patients: data from a randomized controlled pilot trial.

  • Lily Li‎ et al.
  • PloS one‎
  • 2014‎

Memory T-cells are mediators of transplant injury, and no therapy is known to prevent the development of cross-reactive memory alloimmunity. Activated vitamin D is immunomodulatory, and vitamin D deficiency, common in hemodialysis patients awaiting transplantation, is associated with a heightened alloimmune response. Thus, we tested the hypothesis that vitamin D3 supplementation would prevent alloreactive T-cell memory formation in vitamin D-deficient hemodialysis patients.


Identification of small molecules with type I interferon inducing properties by high-throughput screening.

  • Luis Martínez-Gil‎ et al.
  • PloS one‎
  • 2012‎

The continuous emergence of virus that are resistant to current anti-viral drugs, combined with the introduction of new viral pathogens for which no therapeutics are available, creates an urgent need for the development of novel broad spectrum antivirals. Type I interferon (IFN) can, by modulating the cellular expression profile, stimulate a non-specific antiviral state. The antiviral and adjuvant properties of IFN have been extensively demonstrated; however, its clinical application has been so far limited. We have developed a human cell-based assay that monitors IFN-β production for use in a high throughput screen. Using this assay we screened 94,398 small molecules and identified 18 compounds with IFN-inducing properties. Among these, 3 small molecules (C3, E51 and L56) showed activity not only in human but also in murine and canine derived cells. We further characterized C3 and showed that this molecule is capable of stimulating an anti-viral state in human-derived lung epithelial cells. Furthermore, the IFN-induction by C3 is not diminished by the presence of influenza A virus NS1 protein or hepatitis C virus NS3/4A protease, which make this molecule an interesting candidate for the development of a new type of broad-spectrum antiviral. In addition, the IFN-inducing properties of C3 also suggest its potential use as vaccine adjuvant.


Host modulators of H1N1 cytopathogenicity.

  • Samuel E Ward‎ et al.
  • PloS one‎
  • 2012‎

Influenza A virus infects 5-20% of the population annually, resulting in ~35,000 deaths and significant morbidity. Current treatments include vaccines and drugs that target viral proteins. However, both of these approaches have limitations, as vaccines require yearly development and the rapid evolution of viral proteins gives rise to drug resistance. In consequence additional intervention strategies, that target host factors required for the viral life cycle, are under investigation. Here we employed arrayed whole-genome siRNA screening strategies to identify cell-autonomous molecular components that are subverted to support H1N1 influenza A virus infection of human bronchial epithelial cells. Integration across relevant public data sets exposed druggable gene products required for epithelial cell infection or required for viral proteins to deflect host cell suicide checkpoint activation. Pharmacological inhibition of representative targets, RGGT and CHEK1, resulted in significant protection against infection of human epithelial cells by the A/WS/33 virus. In addition, chemical inhibition of RGGT partially protected against H5N1 and the 2009 H1N1 pandemic strain. The observations reported here thus contribute to an expanding body of studies directed at decoding vulnerabilities in the command and control networks specified by influenza virulence factors.


HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells.

  • Diede Oudshoorn‎ et al.
  • PloS one‎
  • 2012‎

Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation.Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6(-/-) mice may provide a feasible model to study the role of human HerC5 in antiviral responses.


Influenza-infected neutrophils within the infected lungs act as antigen presenting cells for anti-viral CD8(+) T cells.

  • Matthew M Hufford‎ et al.
  • PloS one‎
  • 2012‎

Influenza A virus (IAV) is a leading cause of respiratory tract disease worldwide. Anti-viral CD8(+) T lymphocytes responding to IAV infection are believed to eliminate virally infected cells by direct cytolysis but may also contribute to pulmonary inflammation and tissue damage via the release of pro-inflammatory mediators following recognition of viral antigen displaying cells. We have previously demonstrated that IAV antigen expressing inflammatory cells of hematopoietic origin within the infected lung interstitium serve as antigen presenting cells (APC) for infiltrating effector CD8(+) T lymphocytes; however, the spectrum of inflammatory cell types capable of serving as APC was not determined. Here, we demonstrate that viral antigen displaying neutrophils infiltrating the IAV infected lungs are an important cell type capable of acting as APC for effector CD8(+) T lymphocytes in the infected lungs and that neutrophils expressing viral antigen as a result of direct infection by IAV exhibit the most potent APC activity. Our findings suggest that in addition to their suggested role in induction of the innate immune responses to IAV, virus clearance, and the development of pulmonary injury, neutrophils can serve as APCs to anti-viral effector CD8(+) T cells within the infected lung interstitium.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: