Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Mindfulness-induced selflessness: a MEG neurophenomenological study.

  • Yair Dor-Ziderman‎ et al.
  • Frontiers in human neuroscience‎
  • 2013‎

Contemporary philosophical and neurocognitive studies of the self have dissociated two distinct types of self-awareness: a "narrative" self-awareness (NS) weaving together episodic memory, future planning and self-evaluation into a coherent self-narrative and identity, and a "minimal" self-awareness (MS) focused on present momentary experience and closely tied to the sense of agency and ownership. Long-term Buddhist meditation practice aims at realization of a "selfless" mode of awareness (SL), where identification with a static sense of self is replaced by identification with the phenomenon of experiencing itself. NS-mediating mechanisms have been explored by neuroimaging, mainly fMRI, implicating prefrontal midline structures, but MS processes are not well characterized and SL even less so. To this end we tested 12 long-term mindfulness meditators using a neurophenomenological study design, incorporating both magnetoencephalogram (MEG) recordings and first person descriptions. We found that (1) NS attenuation involves extensive frontal, and medial prefrontal gamma band (60-80 Hz) power decreases, consistent with fMRI and intracranial EEG findings; (2) MS attenuation is related to beta-band (13-25 Hz) power decreases in a network that includes ventral medial prefrontal, medial posterior and lateral parietal regions; and (3) the experience of selflessness is linked to attenuation of beta-band activity in the right inferior parietal lobule. These results highlight the role of dissociable frequency-dependent networks in supporting different modes of self-processing, and the utility of combining phenomenology, mindfulness training and electrophysiological neuroimaging for characterizing self-awareness.


Child brain exhibits a multi-rhythmic response to attachment cues.

  • Maayan Pratt‎ et al.
  • Social cognitive and affective neuroscience‎
  • 2018‎

Research on the human parental brain implicated brain networks involved in simulation, mentalization and emotion processing and indicated that stimuli of own parent-child interaction elicit greater integration among networks supporting attachment. Here, we examined children's neural activation while viewing own parent-child interactions and asked whether similar networks activate when children are exposed to attachment stimuli. Sixty-five 11-year-old children underwent magnetoencephalography (MEG) while observing own vs unfamiliar mother-child interaction. Own mother-child interactions elicited a greater neural response across distributed brain areas including alpha suppression in posterior regions, theta enhancement in the fusiform gyrus and beta- and gamma-band oscillations across a wide cluster in the right temporal cortex, comprising the superior temporal sulcus/superior temporal gyrus and insula. Theta and gamma activations were associated with the degree of mother-child social synchrony in the home ecology. Findings from this exploratory study are the first to show activations in children that are similar to previous findings in parents and comparable associations between social synchrony and gamma oscillations in temporal regions. Results indicate that attachment stimuli elicit a strong neural response in children that spreads across a wide range of oscillations, underscoring the considerable neural resources allocated to this fundamental, survival-related cue.


Perception of social synchrony induces mother-child gamma coupling in the social brain.

  • Jonathan Levy‎ et al.
  • Social cognitive and affective neuroscience‎
  • 2017‎

The recent call to move from focus on one brain's functioning to two-brain communication initiated a search for mechanisms that enable two humans to coordinate brain response during social interactions. Here, we utilized the mother-child context as a developmentally salient setting to study two-brain coupling. Mothers and their 9-year-old children were videotaped at home in positive and conflictual interactions. Positive interactions were microcoded for social synchrony and conflicts for overall dialogical style. Following, mother and child underwent magnetoencephalography while observing the positive vignettes. Episodes of behavioral synchrony, compared to non-synchrony, increased gamma-band power in the superior temporal sulcus (STS), hub of social cognition, mirroring and mentalizing. This neural pattern was coupled between mother and child. Brain-to-brain coordination was anchored in behavioral synchrony; only during episodes of behavioral synchrony, but not during non-synchronous moments, mother's and child's STS gamma power was coupled. Importantly, neural synchrony was not found during observation of unfamiliar mother-child interaction Maternal empathic/dialogical conflict style predicted mothers' STS activations whereas child withdrawal predicted attenuated STS response in both partners. Results define a novel neural marker for brain-to-brain synchrony, highlight the role of rapid bottom-up oscillatory mechanisms for neural coupling and indicate that behavior-based processes may drive synchrony between two brains during social interactions.


The temporal unfolding of face processing in social anxiety disorder--a MEG study.

  • Sharon Riwkes‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

The current study is the first to use magnetoencephalography (MEG) to examine how individuals with social anxiety disorder (SAD) process emotional facial expressions (EFEs). We expected that, compared to healthy controls (HCs), participants with SAD will show an early (<200 ms post-stimulus) over-activation in the insula and the fusiform gyrus (FG, associated with the N170/M170 component), and later (>200 ms post-stimulus) over-activation in the dorsolateral prefrontal cortex (DLPFC). Individuals with SAD (n = 12) and healthy controls (HCs, n = 12) were presented with photographs of facial displays during MEG recording. As compared to the HC group, the SAD group showed a reduced M170 (right FG under-activation around 130-200 ms); early reduced activation in the right insula, and lower insular sensitivity to the type of EFE displayed. In addition, the SAD group showed a late over-activation in the right DLPFC. This unique EFE processing pattern in SAD suggests an early under-activation of cortical areas, possibly related to reduced emphasis on high spatial frequency information and greater early emphasis on low spatial frequency information. The late DLPFC over-activation in the SAD group may correlate to failures of cognitive control in this disorder. The importance of a temporal perspective for the understanding of facial processing in psychopathology is underlined.


A magnetoencephalographic study of face processing: M170, gamma-band oscillations and source localization.

  • Zaifeng Gao‎ et al.
  • Human brain mapping‎
  • 2013‎

EEG studies suggested that the N170 ERP and Gamma-band responses to faces reflect early and later stages of a multiple-level face-perception mechanism, respectively. However, these conclusions should be considered cautiously because EEG-recorded Gamma may be contaminated by noncephalic activity such as microsaccades. Moreover, EEG studies of Gamma cannot easily reveal its intracranial sources. Here we recorded MEG rather than EEG, assessed the sources of the M170 and Gamma oscillations using beamformer, and explored the sensitivity of these neural manifestations to global, featural and configural information in faces. The M170 was larger in response to faces and face components than in response to watches. Scrambling the configuration of the inner components of the face even if presented without the face contour reduced and delayed the M170. The amplitude of MEG Gamma oscillations (30-70 Hz) was higher than baseline during an epoch between 230-570 ms from stimulus onset and was particularly sensitive to the configuration of the stimuli, regardless of their category. However, in the lower part of this frequency range (30-40 Hz) only physiognomic stimuli elevated the MEG above baseline. Both the M170 and Gamma were generated in a posterior-ventral network including the fusiform, inferior-occipital and lingual gyri, all in the right hemisphere. The generation of Gamma involved additional sources in the visual system, bilaterally. We suggest that the evoked M170 manifests a face-perception mechanism based on the global characteristics of face, whereas the induced Gamma oscillations are associated with the integration of visual input into a pre-existent coherent perceptual representation.


Self-specific processing in the meditating brain: a MEG neurophenomenology study.

  • Yair Dor-Ziderman‎ et al.
  • Neuroscience of consciousness‎
  • 2016‎

Self-specific processes (SSPs) specify the self as an embodied subject and agent, implementing a functional self/nonself distinction in perception, cognition, and action. Despite recent interest, it is still undetermined whether SSPs are all-or-nothing or graded phenomena; whether they can be identified in neuroimaging data; and whether they can be altered through attentional training. These issues are approached through a neurophenomenological exploration of the sense-of-boundaries (SB), the fundamental experience of being an 'I' (self) separated from the 'world' (nonself). The SB experience was explored in collaboration with a uniquely qualified meditation practitioner, who volitionally produced, while being scanned by magnetoencephalogram (MEG), three mental states characterized by a graded SB experience. The results were then partly validated in an independent group of 10 long-term meditators. Implicated neural mechanisms include right-lateralized beta oscillations in the temporo-parietal junction, a region known to mediate the experiential unity of self and body; and in the medial parietal cortex, a central node of the self's representational system. The graded nature as well as the trainable flexibility and neural plasticity of SSPs may hold clinical implications for populations with a disturbed SB.


Maturation of Pain Empathy from Child to Adult Shifts from Single to Multiple Neural Rhythms to Support Interoceptive Representations.

  • Jonathan Levy‎ et al.
  • Scientific reports‎
  • 2018‎

While empathy to the pain of conspecific is evolutionary-ancient and is observed in rodents and in primates, it also integrates higher-order affective representations. Yet, it is unclear whether human empathy for pain is inborn or matures during development and what neural processes underpin its maturation. Using magnetoencephalography, we monitored the brain response of children, adolescents, and adults (n = 209) to others' pain, testing the shift from childhood to adult functioning. Results indicate that children's vicarious empathy for pain operates via rudimentary sensory predictions involving alpha oscillations in somatosensory cortex, while adults' response recruits advanced mechanisms of updating sensory predictions and activating affective empathy in viceromotor cortex via higher-level representations involving beta- and gamma-band activity. Our findings suggest that full-blown empathy to others' pain emerges only in adulthood and involves a shift from sensory self-based to interoceptive other-focused mechanisms that support human altruism, maintain self-other differentiation, modulate feedback to monitor other's state, and activate a plan of action to alleviate other's suffering.


Neural rhythmic underpinnings of intergroup bias: implications for peace-building attitudes and dialogue.

  • Jonathan Levy‎ et al.
  • Social cognitive and affective neuroscience‎
  • 2022‎

Intergroup bias is a ubiquitous socio-cognitive phenomenon that, while sustaining human dependence on group living, often leads to prejudice, inequity, and violence; yet, its neural underpinnings remain unclear. Framed within the Israeli-Palestinian conflict and targeting youth, this study utilized magnetoencephalography to describe intrinsic neural oscillatory processes that represent the intergroup bias and may link with engagement in peacemaking in order to shed further light on the neural mechanisms underpinning intergroup conflict. Across the oscillatory spectrum, from very low to very high frequency bands, the only rhythm found to underlie the intergroup bias was the alpha rhythm. Alpha rhythm was continuously activated across the task and integrated a rapid perceptual component in the occipital cortex with a top-down cognitive-control component in the medial cingulate cortex. These components were distinctly associated with the real-life intergroup dialogue style and expressed attitudes that promote active engagement in peacemaking. Our findings suggest that the cortical alpha rhythm plays a crucial role in sustaining intergroup bias and addresses its impact on concrete intergroup experiences. The results highlight the need to provide opportunities for active peace-building dialogue to youth reared amidst intractable conflicts.


Chronic trauma impairs the neural basis of empathy in mothers: Relations to parenting and children's empathic abilities.

  • Jonathan Levy‎ et al.
  • Developmental cognitive neuroscience‎
  • 2019‎

Early life stress carries long-term negative consequences for children's well-being and maturation of the social brain. Here, we utilize a unique cohort to test its effects on mothers' social brain, targeting mothers' neural empathic response in relation to caregiving and child empathic abilities. Mother-child dyads living in a zone of repeated war-related trauma were followed from early childhood and mother-child behavioral synchrony was repeatedly observed. At pre-adolescence(11-13 years) children's empathic abilities were assessed and mothers(N = 88, N = 44 war-exposed) underwent magnetoencephalography(MEG) while exposed to vicarious pain. All mothers showed alpha suppression in sensorimotor regions, indicating automatic response to others' pain. However, trauma-exposed mothers did not exhibit gamma oscillations in viceromotor cortex, a neural marker of mature empathy which utilizes interoceptive mechanisms for higher-order understanding and does not emerge before adulthood. Mother-child synchrony across the first decade predicted mothers' viceromotor gamma, and both synchrony and maternal viceromotor gamma mediated the relations between war-exposure and child empathic abilities, possibly charting a cross-generational pathway from mothers' mature neural empathy to children's empathic capacities. Our findings are first to probe the maternal social brain in adolescence in relation to parenting and underscore the need for targeted interventions to mothers raising children in contexts of chronic stress.


Neuronal avalanches and time-frequency representations in stimulus-evoked activity.

  • Oshrit Arviv‎ et al.
  • Scientific reports‎
  • 2019‎

Neuronal avalanches are a hallmark feature of critical dynamics in the brain. While the theoretical framework of a critical branching processes is generally accepted for describing avalanches during ongoing brain activity, there is a current debate about the corresponding dynamical description during stimulus-evoked activity. As the brain activity evoked by external stimuli considerably varies in magnitude across time, it is not clear whether the parameters that govern the neuronal avalanche analysis (a threshold or a temporal scale) should be adaptively altered to accommodate these changes. Here, the relationship between neuronal avalanches and time-frequency representations of stimulus-evoked activity is explored. We show that neuronal avalanche metrics, calculated under a fixed threshold and temporal scale, reflect genuine changes in the underlying dynamics. In particular, event-related synchronization and de-synchronization are shown to align with variations in the power-law exponents of avalanche size distributions and the branching parameter (neural gain), as well as in the spatio-temporal spreading of avalanches. Nonetheless, the scale-invariant behavior associated with avalanches is shown to be a robust feature of healthy brain dynamics, preserved across various periods of stimulus-evoked activity and frequency bands. Taken together, the combined results suggest that throughout stimulus-evoked responses the operating point of the dynamics may drift within an extended-critical-like region.


MEG resting-state oscillations and their relationship to clinical symptoms in schizophrenia.

  • Maor Zeev-Wolf‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Neuroimaging studies suggest that schizophrenia is characterized by disturbances in oscillatory activity, although at present it remains unclear whether these neural abnormalities are driven by dimensions of symptomatology. Examining different subgroups of patients based on their symptomatology is thus very informative in understanding the role of neural oscillation patterns in schizophrenia. In the present study we examined whether neural oscillations in the delta, theta, alpha, beta and gamma bands correlate with positive and negative symptoms in individuals with schizophrenia (SZ) during rest. Resting-state brain activity of 39 SZ and 25 neurotypical controls was recorded using magnetoencephalography. Patients were categorized based on the severity of their positive and negative symptoms. Spectral analyses of beamformer data revealed that patients high in positive symptoms showed widespread low alpha power, and alpha power was negatively correlated with positive symptoms. In contrast, patients high in negative symptoms showed greater beta power in left hemisphere regions than those low in negative symptoms, and beta power was positively correlated with negative symptoms. We further discuss these findings and suggest that different neural mechanisms may underlie positive and negative symptoms in schizophrenia.


Exposure to early and persistent maternal depression impairs the neural basis of attachment in preadolescence.

  • Maayan Pratt‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2019‎

Maternal depression increases child vulnerability to psychopathology, loneliness, and social maladjustment; yet, its long-term effects on the social brain are unknown. In this prospective longitudinal study we examined the impact of early and persistent maternal depression on the neural basis of attachment in preadolescence. A community cohort was followed in two groups; children exposed to maternal depression from birth to 6 years and healthy controls. At 9 months and 6 years, mother-child interactions were coded for maternal sensitivity and affect synchrony and salivary oxytocin levels were assessed at 6 years. At preadolescence (11-13 years), children underwent magnetoencephalography (MEG) while exposed to own versus unfamiliar mother-child interaction. Own interaction elicited greater response in beta- and gamma-band oscillations across a wide cluster in temporal and insular cortices, including the Superior Temporal Sulcus, Superior Temporal Gyrus, Inferior Temporal Gyrus, and insula. Beta activations were predicted by maternal sensitivity across early childhood and gamma by affect synchrony. Oxytocin was related to beta response to social cues. Maternal depression impacted child's brain response in two ways. First, maternal depression significantly increased the prevalence of child affective disorder and such children showed no neural differentiation between attachment and non-attachment stimuli. Second, maternal depression decreased maternal sensitivity, affect synchrony, and child oxytocin across early childhood and these were longitudinally associated with aberrant neural response to attachment-specific and social-general cues in preadolescence. Our findings are the first to describe mechanisms by which maternal depression impairs the neural basis of attachment at the transition to adolescence and advocate the need for relationship-focused early interventions.


The neural development of empathy is sensitive to caregiving and early trauma.

  • Jonathan Levy‎ et al.
  • Nature communications‎
  • 2019‎

Empathy is a core human social ability shaped by biological dispositions and caregiving experiences; yet the mechanisms sustaining maturation of the neural basis of empathy are unknown. Here, we followed eighty-four children, including 42 exposed to chronic war-related adversity, across the first decade of life, and assessed parenting, child temperament, and anxiety disorders as contributors to the neural development of empathy. At preadolescence, participants underwent magenetoencephalography while observing others' distress. Preadolescents show a widely-distributed response in structures implicating the overlap of affective (automatic) and cognitive (higher-order) empathy, which is predicted by mother-child synchrony across childhood. Only temperamentally reactive young children growing in chronic adversity, particularly those who later develop anxiety disorders, display additional engagement of neural nodes possibly reflecting hyper-mentalizing and ruminations over the distressing stimuli. These findings demonstrate how caregiving patterns fostering interpersonal resonance, reactive temperament, and chronic adversity combine across early development to shape the human empathic brain.


Oscillatory brain mechanisms of the hypnotically-induced out-of-body experience.

  • Maor Zeev-Wolf‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2017‎

One of the most challenging questions regarding the nature and neural basis of consciousness is the embodied dimension of the phenomenon, that is, feeling located within the body and viewing the world from that spatial perspective. Current theories in neurophysiology highlight the active role of multisensory and sensorimotor integration in supporting self-location and self-perspective, and propose the right temporal-parietal-junction (rTPJ) as a key area for such function. These theories are based mainly on findings from two experimental paradigms: manipulation of bottom-up multisensory information integration regarding one's body location (full-body illusion), or direct and invasive manipulation disrupting brain activity at the rTPJ. In this study we take a different approach by using hypnotic suggestion - a non-invasive top-down technique - to manipulate the subjective experience of self-location. The brain activity of 18 right-handed participants was recorded using magnetoencephalography (MEG) while their subjective experience of self-location was hypnotically manipulated. Spectral analyses were conducted on the spontaneous MEG data before and during an induction of an out-of-body experience (OBE) by a trained psychiatrist. The results indicate high correlations between power at alpha and high-gamma frequency-bands and the degree of perceived change in self-location. Regions exhibiting such correlations include temporal-occipital regions, the rTPJ, as well as frontal and midline regions. These findings are in line with an oscillatory-based predictive coding framework.


Brain response during the M170 time interval is sensitive to socially relevant information.

  • Oshrit Arviv‎ et al.
  • Neuropsychologia‎
  • 2015‎

Deciphering the social meaning of facial displays is a highly complex neurological process. The M170, an event related field component of MEG recording, like its EEG counterpart N170, was repeatedly shown to be associated with structural encoding of faces. However, the scope of information encoded during the M170 time window is still being debated. We investigated the neuronal origin of facial processing of integrated social rank cues (SRCs) and emotional facial expressions (EFEs) during the M170 time interval. Participants viewed integrated facial displays of emotion (happy, angry, neutral) and SRCs (indicated by upward, downward, or straight head tilts). We found that the activity during the M170 time window is sensitive to both EFEs and SRCs. Specifically, highly prominent activation was observed in response to SRC connoting dominance as compared to submissive or egalitarian head cues. Interestingly, the processing of EFEs and SRCs appeared to rely on different circuitry. Our findings suggest that vertical head tilts are processed not only for their sheer structural variance, but as social information. Exploring the temporal unfolding and brain localization of non-verbal cues processing may assist in understanding the functioning of the social rank biobehavioral system.


Oxytocin affects spontaneous neural oscillations in trauma-exposed war veterans.

  • Moranne Eidelman-Rothman‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Exposure to combat-related trauma often leads to lifetime functional impairments. Previous research demonstrated the effects of oxytocin (OT) administration on brain regions implicated in post-traumatic stress disorder (PTSD); yet OT's effects on brain patterns in trauma-exposed veterans have not been studied. In the current study the effects of OT on spontaneous brain oscillatory activity were measured in 43 veterans using magnetoencephalography (MEG): 28 veterans who were exposed to a combat-related trauma and 15 trauma-unexposed controls. Participants participated in two experimental sessions and were administered OT or placebo (PBO) in a double-blind, placebo-control, within-subject design. Following OT/PBO administration, participants underwent a whole-head MEG scan. Plasma and salivary OT levels were assessed each session. Spontaneous brain activity measured during a 2-min resting period was subjected to source-localization analysis. Trauma-exposed veterans showed higher resting-state alpha (8-13 Hz) activity compared to controls in the left dorsolateral prefrontal cortex (dlPFC), specifically in the superior frontal gyrus (SFG) and the middle frontal gyrus (MFG), indicating decreased neural activity in these regions. The higher alpha activity was "normalized" following OT administration and under OT, group differences were no longer found. Increased resting-state alpha was associated with lower baseline plasma OT, reduced salivary OT reactivity, and more re-experiencing symptoms. These findings demonstrate effects of OT on resting-state brain functioning in prefrontal regions subserving working memory and cognitive control, which are disrupted in PTSD. Results raise the possibility that OT, traditionally studied in social contexts, may also enhance performance in cognitive tasks associated with working memory and cognitive control following trauma exposure.


Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study.

  • Aviva Berkovich-Ohana‎ et al.
  • Frontiers in psychology‎
  • 2013‎

Meditation practice can lead to what have been referred to as "altered states of consciousness."One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space, and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term mindfulness meditation (MM) practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing. The participants were asked to volitionally bring about distinct states of "Timelessness" (outside time) and "Spacelessness" (outside space) while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory, or imagination, we used control states of "Then" (past) and "There" (another place). MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming). Particularly, we searched for similar neural activity hypothesized to underlie both the state of "Timelessness" and "Spacelessness." The results were mostly confined to the theta band, and showed that: (1) the "Then"/"There" overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule (PPL), right precentral/middle frontal gyrus (MFG), bilateral precuneus); (2) "Timelessness"/"Spacelessness" conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction (TPJ), cerebellum); and (3) phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners within a neurophenomenological setup for scientifically characterizing a self-induced altered sense of time, space and body, as well as the importance of theta activity in relation with these altered states.


Into the square and out of the box: the effects of Quadrato Motor Training on creativity and alpha coherence.

  • Tal Dotan Ben-Soussan‎ et al.
  • PloS one‎
  • 2013‎

The objective of the present study was to investigate the body-cognitive relationship through behavioral and electrophysiological measures in an attempt to uncover the underlying mediating neuronal mechanism for movement-induced cognitive change. To this end we examined the effects of Quadrato Motor Training (QMT), a new whole-body training paradigm on cognitive performance, including creativity and reaction time tasks, and electrophysiological change, using a within-subject pre-post design. Creativity was studied by means of the Alternate Uses Task, measuring ideational fluency and ideational flexibility. Electrophysiological effects were measured in terms of alpha power and coherence. In order to determine whether training-induced changes were driven by the cognitive or the motor aspects of the training, we used two control groups: Verbal Training (VT, identical cognitive training with verbal response) and Simple Motor Training (SMT, similar motor training with reduced choice requirements). Twenty-seven participants were randomly assigned to one of the groups. Following QMT, we found enhanced inter-hemispheric and intra-hemispheric alpha coherence, and increased ideational flexibility, which was not the case for either the SMT or VT groups. These findings indicate that it is the combination of the motor and cognitive aspects embedded in the QMT which is important for increasing ideational flexibility and alpha coherence.


The Neural Basis of Empathy and Empathic Behavior in the Context of Chronic Trauma.

  • Jonathan Levy‎ et al.
  • Frontiers in psychiatry‎
  • 2019‎

Background: Accumulating evidence in social neuroscience suggests that mature human empathy relies on the integration of two types of processes: a lower-order process mainly tapping into automatic and sensory mechanisms and a higher-order process involving affect and cognition and modulated by top-down control. Studies have also indicated that neural measures of empathy often correlate with behavioral measures of empathy. Yet, little is known on the effects of chronic trauma on the neural and behavioral indices of empathy and the associations among them. Methods: Mothers exposed to chronic war-related trauma and nonexposed controls (N = 88, N = 41 war-exposed) underwent magnetoencephalography (MEG) while watching stimuli depicting vicarious emotional distress. Maternal empathic behavior was assessed during mother-child interaction involving a joint task. Results: Empathy-evoking vignettes elicited response in alpha rhythms in a network involving both sensorimotor and viceromotor (anterior insula) regions, suggesting integration of the sensory and affective components of empathy. Whereas exposure to chronic stress did not affect the level of neural activations in this network, it reduced maternal empathic behavior. Furthermore, trauma exposure impaired the coherence of brain and behavior; only among controls, but not among trauma-exposed mothers, the neural basis of empathy was predicted by maternal empathic behavior. Conclusions: Chronic stress takes a toll on the mother's empathic ability and indirectly impacts the neural basis of empathy by disrupting the coherence of brain and behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: