Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 84 papers

Computational and Experimental 1H-NMR Study of Hydrated Mg-Based Minerals.

  • Eric G Sorte‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Magnesium oxide (MgO) can convert to different magnesium-containing compounds depending on exposure and environmental conditions. Many MgO-based phases contain hydrated species allowing 1H-nuclear magnetic resonance (NMR) spectroscopy to be used in the characterization and quantification of proton-containing phases; however, surprisingly limited examples have been reported. Here, 1H-magic angle spinning (MAS) NMR spectra of select Mg-based minerals are presented and assigned. These experimental results are combined with computational NMR density functional theory (DFT) periodic calculations to calibrate the predicted chemical shielding results. This correlation is then used to predict the NMR shielding for a series of different MgO hydroxide, magnesium chloride hydrate, magnesium perchlorate, and magnesium cement compounds to aid in the future assignment of 1H-NMR spectra for complex Mg phases.


Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals.

  • Przemysław Seruga‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Due to various ecological problems, it is required to remove the ammonia nitrogen from wastewater. Industrial wastewater that was not subjected to any purification was used in this study, while most processes described in the literature were carried out using synthetically prepared solutions. The study investigated the removal of ammonium ions using ion exchange on various commercial minerals, in 3 h long batch ion-exchange experiments. Furthermore, research on the sodium chloride activation of the selected mineral was conducted. The screening of the mineral with the highest removal potential was conducted taking into account the adsorption capacity (q) and maximal removal efficiency (E), based on the NH4+ ions changes determined using the selective electrode and spectrophotometric cuvette tests. The highest adsorption capacity (q = 4.92 mg/g) of ammonium ions with the maximum removal efficiency (52.3%) was obtained for bentonite, with a 0-0.05 mm particle size. After pretreatment with a 1 mol/L NaCl solution, maximum efficiency increments were observed (55.7%). The Langmuir adsorption isotherm corresponds well with the equilibrium adsorption data (R2 from 0.97 to 0.98), while the Freundlich model was found to be mismatched (R2 = 0.77). Based on these results it was concluded that natural sorbents may be effectively applied in wastewater treatment. It can be observed that as the size of sorbent particles gets lower, the adsorption capacity, as well as the removal efficiency, gets higher. The bentonite pretreatment with the NaCl solution did not result in the expected efficiency improvement. The 2 mol/L solution affected about 3.5% of the removal efficiency yield.


Study on the Influence of Metal Ions on the Dispersion of Fine Calcium Gangue Minerals.

  • Zhongyi Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

In this study, the calcium gangue material calcite (−10 μm) was used to investigate the effects of different kinds of metal ions and dosages on the dispersion behavior of calcite. The test results showed that the dispersion behavior of calcite was poor under strongly alkaline conditions without the addition of metal ions, and the reason for that was calcite dissolved ions. The degree of influence of different metal ions on calcite dispersion behavior was Fe3+ > Mg2+ > Na+. The three metal ion dosage tests showed that the dispersion behavior of calcite became poorer with the increase of metal ion dosage. This mainly showed that with the increase of Na+ dosage, the trend of the dispersion behavior of calcite was not obvious, but with the increase of Fe3+ and Mg2+ dosage, the trend of calcite dispersion behavior changed more. The dispersion behavior of calcite was devastated by 5 × 10−4 mol/L Fe3+ at pH = 4−12. The different mechanisms of the three metal ions were identified by zeta potential, solution chemistry, and XPS analysis. Na+ only changed the zeta potential value of the calcite surface, which acted as a compressed electric double layer. However, the formation of metal hydroxide species or metal hydroxide surface precipitation due to the adsorption of Fe3+ and Mg2+ on the mineral surface resulted in the change of the dispersion behavior of calcite.


The Impact of Long-and Short-Term Strontium Treatment on Metabolites and Minerals in Glycine max.

  • Agnieszka Hanaka‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The impact of long-term exposure to Sr2+ (LTE, four doses, 43.5 mg Sr2+ per pot, with a total of 174 mg Sr2+ per pot during the entire period of cultivation) and short-term exposure to Sr2+ (STE, one dose, 870 mg Sr2+ per pot four days before harvest) on the content of phytoestrogens and allantoin in soybeans were compared. Sr2+ accumulation, the effect on the concentration of macroelements, and basic physiology were also analyzed. LTE reduced the content of malonyldaidzin and malonylgenistin in the roots (58% and 50% compared to the control, respectively). STE increased the amount of all isoflavones in the stem and genistein in the leaves and decreased the content of malonyldaidzin and malonylgenistin in the leaves (55% and 48% compared to the control, respectively) and roots (69% and 62% of the control, respectively) as well as genistein and coumestrol in the roots (both 50% compared to the control). Sr2+ presence stimulated the accumulation of allantoin in the roots (three-fold higher than in the control), but only STE had similar effects on the shoots. In contrast to LTE, Sr2+ was transported extensively from the roots to the leaves under STE. In comparison to the control, LTE resulted in an increase in the Ca content in the stem by 36%, whereas Ca2+ accumulation in the leaves, stems, and roots increased by 60%, 80%, and 36%, respectively, under STE. Additionally, a significant accumulation of K was found only in the roots of the LTE group. The chlorophyll content did not differ between the treatments. Overall, the production of phytoestrogens and Sr accumulation were affected by both the applied dose and the duration of exposure to Sr.


Development of New Canned Chub Mackerel Products Incorporating Edible Seaweeds-Influence on the Minerals and Trace Elements Composition.

  • Elsa F Vieira‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

This study aimed to develop new canned chub mackerel products incorporating edible seaweeds (Ascophyllum nodosum, Fucus spiralis, Saccorhiza polyschides, Chondrus crispus, Porphyra sp. and Ulva sp.) harvested in the Portuguese North-Central coast, with simultaneous sensory improvement and minerals enrichment. Two processes were compared, namely the addition of seaweeds in i) the canning step and ii) in the brining step (as the replacement for salt). The concentrations of four macrominerals (Na, K, Ca and Mg), chloride, and twelve trace elements (Co, Cu, Fe, I, Li, Mn, Mo, Rb, Se, Sr, V and Zn) were determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS-FAAS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Results showed that canned chub mackerel incorporating C. crispus and F. spiralis was found to be the preferred sensory option, also exhibiting contents enriched with Cl, Co, Cu, Fe, I, Li, Mg, Mn, Mo, Na, Rb, Se, and Sr. This effect was more pronounced when both seaweed species were added to replace the salt added in the brining step.


Simple Co-Precipitation of Iron Minerals for the Removal of Phenylarsonic Acid: Insights into the Adsorption Performance and Mechanism.

  • Lili Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

In this study, three kinds of iron minerals, ferrihydrite, hematite, and goethite, were prepared by a simple coprecipitation method for the adsorption and removal of phenylarsonic acid (PAA). The adsorption of PAA was explored, and the influences of ambient temperature, pH, and co-existing anions on adsorption were evaluated. The experimental results show that rapid adsorption of PAA occurs within 180 min in the presence of iron minerals, and the adsorption process conforms to a pseudo-second-order kinetic model. The isothermal adsorption of PAA by ferrihydrite, goethite, and hematite agrees with the Redlich-Peterson model. The maximum adsorption capacities of PAA are 63.44 mg/g, 19.03 mg/g, and 26.27 mg/g for ferrihydrite, goethite, and hematite, respectively. Environmental factor experiments illustrated that an alkaline environment will significantly inhibit the adsorption of PAA by iron minerals. CO32-, SiO32-, and PO43- in the environment will also significantly reduce the adsorption performance of the three iron minerals. The adsorption mechanism was analyzed by FTIR and XPS, which indicated that ligand exchange between the surface hydroxyl group and the arsine group leads to the formation of an Fe-O-As bond, and electrostatic attraction between the iron minerals and PAA played an important role in the adsorption.


Comparison of the In Vitro Bioavailability of Selected Minerals from Gluten-Free Breads Enriched with Grains and Synthetic Organic and Non-Organic Compounds.

  • Anna Rogaska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Despite the constant efforts of scientists to improve the texture, sensory properties, and nutritional value of gluten-free bread, obtaining high bioavailability of minerals is still a huge challenge. Gluten-free bakery products are characterized by a low bioavailability of minerals. The aim of this study was to design gluten-free bread with high bioavailability of minerals commonly found in deficiencies in people struggling with gluten intolerance.


Edible Halophytes with Functional Properties: In Vitro Protein Digestibility and Bioaccessibility and Intestinal Absorption of Minerals and Trace Elements from Australian Indigenous Halophytes.

  • Sukirtha Srivarathan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Halophytes are considered emerging functional foods as they are high in protein, minerals, and trace elements, although studies investigating halophyte digestibility, bioaccessibility, and intestinal absorption are limited. Therefore, this study investigated the in vitro protein digestibility, bioaccessibility and intestinal absorption of minerals and trace elements in saltbush and samphire, two important Australian indigenous halophytes. The total amino acid contents of samphire and saltbush were 42.5 and 87.3 mg/g DW, and even though saltbush had a higher total protein content overall, the in vitro digestibility of samphire protein was higher than the saltbush protein. The in vitro bioaccessibility of Mg, Fe, and Zn was higher in freeze-dried halophyte powder compared to the halophyte test food, suggesting that the food matrix has a significant impact on mineral and trace element bioaccessibility. However, the samphire test food digesta had the highest intestinal Fe absorption rate, whereas the saltbush digesta exhibited the lowest (37.7 vs. 8.9 ng/mL ferritin). The present study provides crucial data about the digestive "fate" of halophyte protein, minerals, and trace elements and increases the understanding of these underutilized indigenous edible plants as future functional foods.


The Content of Selected Minerals, Bioactive Compounds, and the Antioxidant Properties of the Flowers and Fruit of Selected Cultivars and Wildly Growing Plants of Sambucus nigra L.

  • Karolina Młynarczyk‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

This study compared the mineral content and bioactive properties of flowers and fruit coming from wild elderberry plants with those of flowers and fruit harvested from elderberry cultivars grown in an orchard. Elderberry fruit and flowers were analyzed for the content of selected minerals, phenolic compounds, and anthocyanins, as well as for antioxidant activity. Mineral content was determined by the atomic absorption spectrometry method, while antioxidant activity and the content of polyphenols and anthocyanins were determined by spectrophotometric methods. Flowers were found to contain more total ash and much higher content of most of minerals, except magnesium which was present in high concentrations in fruit. Fruit showed significantly higher antioxidant activity than flowers, whereas the total phenolic content varied depending on the growing location or cultivar. The material obtained from selected cultivars growing in an orchard had higher antioxidant activity and polyphenol and anthocyanin content than the material obtained from wild plants. Fruit of the "Haschberg" cultivar and flowers of the "Sampo" cultivar had the best bioactive properties of the studied samples.


Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design.

  • Jhonny Alejandro Poveda-Giraldo‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Biorefinery feasibility is highly influenced by the early design of the best feedstock transformation pathway to obtain value-added products. Pretreatment has been identified as the critical stage in biorefinery design since proper pretreatment influences subsequent reaction, separation, and purification processes. However, many pretreatment analyses have focused on preserving and valorizing six-carbon sugars for future use in bioconversion processes, leaving aside fractions such as hemicellulose and lignin. To date, there has been no pretreatment systematization for the removal of lignocellulosic fractions. This work defines pretreatment efficacy through operational, economic, environmental, and social indicators. Thus, using the data reported in the literature, as well as the results of the simulation schemes, a multi-criteria weighting of the best-performing schemes for the isolation or removal of cellulose, hemicellulose, and lignin was carried out. As a main result, it was concluded that dilute acid is the most effective for cellulose isolation and hemicellulose removal for producing platform products based on six- and five-carbon sugars, respectively. Additionally, the kraft process is the best methodology for lignin removal and its future use in biorefineries. The results of this work help to elucidate a methodological systematization of the pretreatment efficacy in the design of biorefineries as an early feasibility stage considering sustainability aspects.


A Novel Approach to Improve Acid Diversion in Carbonate Rocks Using Thermochemical Fluids: Experimental and Numerical Study.

  • Mustafa Ba Alawi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The distribution of acid over all layers of interest is a critical measure of matrix acidizing efficiency. Chemical and mechanical techniques have been widely adapted for enhancing acid diversion. However, it was demonstrated that these often impact the formation with damage after the acid job is completed. This study introduces, for the first time, a novel solution to improve acid diversion using thermochemical fluids. This method involves generating nitrogen gas at the downhole condition, where the generated gas will contribute in diverting the injected acids into low-permeability formations. In this work, both lab-scale numerical and field-scale analytical models were developed to evaluate the performance of the proposed technique. In addition, experimental measurements were carried out in order to demonstrate the application of thermochemical in improving the acid diversion. The results showed that a thermochemical approach has an effective performance in diverting the injected acids into low-permeability rocks. After treatment, continuous wormholes were generated in the high-permeability rocks as well as in low-permeability rocks. The lab-scale model was able to replicate the wormholing impact observed in the lab. In addition, alternating injection of thermochemical and acid fluids reduced the acid volume 3.6 times compared to the single stage of thermochemical injection. Finally, sensitivity analysis indicates that the formation porosity and permeability have major impacts on the acidizing treatment, while the formations pressures have minor effect on the diversion performance.


Mass and Heat Transfer of Thermochemical Fluids in a Fractured Porous Medium.

  • Murtada Saleh Aljawad‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The desire to improve hydraulic fracture complexity has encouraged the use of thermochemical additives with fracturing fluids. These chemicals generate tremendous heat and pressure pulses upon reaction. This study developed a model of thermochemical fluids' advection-reactive transport in hydraulic fractures to better understand thermochemical fluids' penetration length and heat propagation distance along the fracture and into the surrounding porous media. These results will help optimize the design of this type of treatment. The model consists of an integrated wellbore, fracture, and reservoir mass and heat transfer models. The wellbore model estimated the fracture fluid temperature at the subsurface injection interval. The integrated model showed that in most cases the thermochemical fluids were consumed within a short distance from the wellbore. However, the heat of reaction propagated a much deeper distance along the hydraulic fracture. In most scenarios, the thermochemical fluids were consumed within 15 ft from the fracture inlet. Among other design parameters, the thermochemical fluid concentration is the most significant in controlling the penetration length, temperature, and pressure response. The model showed that a temperature increase from 280 to 600 °F is possible by increasing the thermochemical concentration. Additionally, acid can be used to trigger the reaction but results in a shorter penetration length and higher temperature response.


Detection of Several Homologous MicroRNAs by a Single Smart Probe System Consisting of Linear Nucleic Acid Blockers.

  • Sulayman A Oladepo‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

We report a universal smart probe (SP) that is capable of detecting several homologous let-7 microRNAs (miRNAs). While the SP is complementary to let-7a, and therefore, strongly binds to this target, due to sequence homology, the SP also has equal propensity to non-specifically hybridize with let-7b and let-7c, which are homologous to let-7a. The fluorescence signal of the SP was switched off in the absence of any homologous member target, but the signal was switched on when any of the three homologous members was present. With the assistance of nucleic acid blockers (NABs), this SP system can discriminate between homologous miRNAs. We show that the SP can discriminate between let-7a and the other two sequences by using linear NABs (LNABs) to block non-specific interactions between the SP and these sequences. We also found that LNABs used do not cross-react with the let-7a target due to the low LNABs:SP molar ratio of 6:1 used. Overall, this SP represents a universal probe for the recognition of a homologous miRNA family. The assay is sensitive, providing a detection limit of 6 fmol. The approach is simple, fast, usable at room temperature, and represents a general platform for the in vitro detection of homologous microRNAs by a single fluorescent hairpin probe.


Tuscan Varieties of Sweet Cherry Are Rich Sources of Ursolic and Oleanolic Acid: Protein Modeling Coupled to Targeted Gene Expression and Metabolite Analyses.

  • Roberto Berni‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.


Anticancer Activity and Apoptosis Induction of Gold(III) Complexes Containing 2,2'-Bipyridine-3,3'-dicarboxylic Acid and Dithiocarbamates.

  • Ali Alhoshani‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Three novel gold(III) complexes (1-3) of general composition [Au(Bipydc)(S2CNR2)]Cl2 (Bipydc = 2,2'-bipyridine-3,3'-dicarboxylic acid and R = methyl for dimethyldithiocarbamate (DMDTC), ethyl for diethyldithiocarbamate (DEDTC), and benzyl for dibenzyldithiocarbamate (DBDTC)) have been synthesized and characterized by elemental analysis, FTIR and NMR spectroscopic techniques. The spectral results confirmed the presence of both the Bipydc and dithiocarbamate ligands in the complexes. The in vitro cytotoxic studies demonstrated that compounds 1-3 were highly cytotoxic to A549, HeLa, MDA-231, and MCF-7 cancer cells with activities much higher (about 25-fold) than cisplatin. In order to know the possible mode of cell death complex 2, [Au(Bipydc)(DEDTC)]Cl2 was further tested for induction of apoptosis towards the MCF-7 cells. The results indicated that complex 2 induces cell death through apoptosis.


Fractionated Lignosulfonates for Laccase-Catalyzed Oxygen-Scavenging Films and Coatings.

  • Sandra Winestrand‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Lignin derivatives have potential as antioxidants in advanced packaging materials through their ability to scavenge oxygen in reactions catalyzed by phenol-oxidizing enzymes, such as laccase. The effects of size fractionation of lignosulfonates on laccase-catalyzed reactions were investigated in experiments with aqueous solutions, films, and coated paperboard. Four industrial lignosulfonate preparations were compared: Feed (unfractionated), Prod (5-60 kDa enriched), Conc (≥60 kDa enriched), and Perm (≤60 kDa enriched). Extraction of lignosulfonates from films showed that the enzymic reaction increased the average molecular weight from <10,000 to up to 66,000. The enzymatic reaction resulted in an increase in the water contact angle of the films from the range 25-49° to 56-81°. The four preparations showed relatively small differences with regard to their ability to scavenge oxygen in aqueous solution and in experiments with coated paperboards in sealed chambers. Coatings with lignosulfonates where the contents of low-molecular weight material had been reduced (i.e., Prod and Conc) showed improved water resistance after the enzymic reaction. Thus, in both aqueous and solid media, fractionation of lignosulfonates had little effect on oxygen scavenging, but fractionation was beneficial for other reasons, such as improved cross-linking resulting in higher molecular weight and superior water resistance.


Process Optimization and Modeling of Phenol Adsorption onto Sludge-Based Activated Carbon Intercalated MgAlFe Ternary Layered Double Hydroxide Composite.

  • Nuhu Dalhat Mu'azu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A sewage sludge-based activated carbon (SBAC) intercalated MgAlFe ternary layered double hydroxide (SBAC-MgAlFe-LDH) composite was synthesized via the coprecipitation method. The adsorptive performance of the composite for phenol uptake from the aqueous phase was evaluated via the response surface methodology (RSM) modeling technique. The SBAC-MgAlFe-LDH phenol uptake capacity data were well-fitted to reduced RSM cubic model (R2 = 0.995, R2-adjusted = 0.993, R2-predicted = 0.959 and p-values < 0.05). The optimum phenol adsorption onto the SBAC-MgAlFe-LDH was achieved at 35 °C, 125 mg/L phenol, and pH 6. Under the optimal phenol uptake conditions, pseudo-first-order and Avrami fractional-order models provided a better representation of the phenol uptake kinetic data, while the equilibrium data models' fitting follows the order; Liu > Langmuir > Redlich-Peterson > Freundlich > Temkin. The phenol uptake mechanism was endothermic in nature and predominantly via a physisorption process (ΔG° = -5.33 to -5.77 kJ/mol) with the involvement of π-π interactions between the phenol molecules and the functionalities on the SBAC-LDH surface. The maximum uptake capacity (216.76 mg/g) of SBAC-MgAlFe-LDH was much higher than many other SBAC-based adsorbents. The improved uptake capacity of SBAC-LDH was attributed to the effective synergetic influence of SBAC-MgAlFe-LDH, which yielded abundant functionalized surface groups that favored higher aqueous phase uptake of phenol molecules. This study showcases the potential of SBAC-MgAlFe-LDH as an effective adsorbent material for remediation of phenolic wastewater.


Brazil Nut (Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage.

  • Wilson Valerio Vasquez-Rojas‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

High-pressure homogenization (HPH) is an emerging technology for obtaining physical and microbial stability of plant-based milks, but there is little information on the effects of this technology on the phytochemical components of the processed plant food beverage and during its cold storage. The effect of three selected HPH treatments (180 MPa/25 °C, 150 MPa/55 °C, and 50 MPa/75 °C) and pasteurization (PAS) (63 °C, 20 min) on minor lipid constituents, total proteins, phenolic compounds, antioxidant capacity, and essential minerals of Brazil nut beverage (BNB) were studied. Additionally, the study of the possible changes in these constituents was carried out during cold storage at 5 °C for 21 days. The fatty acid profile (dominated by oleic acid and linoleic acid), free fatty acid content, protein, and essential minerals (notable source of Se and Cu) of the processed BNB remained almost stable to treatments (HPH and PAS). Specifically, reductions in squalene (22.7 to 26.4%) and γ-γ-tocopherol (28.4 to 36%) were observed in beverages processed via both non-thermal HPH and thermal PAS, but β-sitosterol remained unchanged. Total phenolics were reduced (24 to 30%) after both treatments, a factor that influenced the observed antioxidant capacity. The studied individual phenolics in BNB were gallic acid, catechin, epicatechin, catechin gallate, and ellagic acid, being the most abundant compounds. During cold storage (5 °C) up to 21 days, changes in the content of phytochemicals, minerals, and total proteins were not noticeable for any treated beverages, and no lipolysis processes were promoted. Therefore, after the application of HPH processing, Brazil nut beverage (BNB) maintained almost unaltered levels of bioactive compounds, essential minerals, total protein, and oxidative stability, remarkable characteristics for its potential development as a functional food.


Ceratocarpus arenarius: Botanical Characteristics, Proximate, Mineral Composition, and Cytotoxic Activity.

  • Aigerim Kantureyeva‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2024‎

Ceratocarpus arenarius (Chenopodiaceae) is an under-investigated annual plant that occurs in dry areas stretching from eastern and south-eastern Europe to East Asia. This article presents the botanical characterization and examination of proximate parameters, minerals and cytotoxic activity of C. arenarius that grows wild in Kazakhstan. The results of morphological analysis using a light microscope, based on cross-sections of stems, roots and leaves, provide the necessary data to develop a regulatory document for this herbal substance as a raw material for use in the pharmaceutical, cosmetic and food industries. The investigated proximate characteristics included moisture content (6.8 ± 0.28%), ash (5.9 ± 0.40%), fat (12.5 ± 21.28%) and protein (392.85 ± 25.50). The plant is also rich in minerals (mg/100 g dry weight); Na (20.48 ± 0.29), K (302.73 ± 1.15), Zn (4.45 ± 0.35), Fe (1.18 ± 0.03), Cu (0.11 ± 0.02), Mn (0.76 ± 0.01), Ca (131.23 ± 0.09) and Mg (60.69 ± 0.72). The ethanolic extract of C. arenarius showed no acute toxicity against the brine shrimp nauplii.


Mineral Composition of Three Popular Wild Mushrooms from Poland.

  • Michalina Gałgowska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The region of Warmia and Mazury is characterized by the special diversity and richness of its natural environment, including large forest complexes, where wild mushrooms are commonly collected and consumed. This study aimed to examine the differences in mineral content (calcium, magnesium, sodium, potassium, iron, zinc, copper, manganese) of three species of mushrooms collected in north-eastern Poland. The research material consisted of dried samples of king bolete (Boletus edulis), bay bolete (Boletus badius), and chanterelle (Cantharellus cibarius) collected in the region of Warmia and Mazury. The content of the above-mentioned elements in mushroom fruit bodies was determined using the flame atomic absorption spectrometry (acetylene-air flame) and the emission technique (acetylene-air flame) for sodium and potassium. For the majority of micro- and macroelements, the studies confirmed the presence of significant differences in their content, depending on the species of fungi. The studied mushrooms cover a significant percentage of daily demand for many of the minerals. This concerns mainly copper, zinc, and potassium, although none of the species was a good source of calcium and sodium. Among the analyzed mushrooms, chanterelle is the best source of most minerals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: