Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Angiogenic Potential of Co-Cultured Human Umbilical Vein Endothelial Cells and Adipose Stromal Cells in Customizable 3D Engineered Collagen Sheets.

  • Philipp Nessbach‎ et al.
  • Journal of functional biomaterials‎
  • 2022‎

The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells (HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture. Both growth factors play a key role in the wound healing process. The capillary-like tube formation of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might promote wound healing.


Titanium-Enriched Medium Promotes Environment-Induced Epigenetic Machinery Changes in Human Endothelial Cells.

  • Célio Júnior da C Fernandes‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation of titanium discs for up to 24 h as recommended by ISO 10993-5:2016, and further used to expose human umbilical vein endothelial cells (HUVECs) for up to 72 h, when the samples were properly harvested to allow molecular analysis and epigenetics. In general, our data show an important repertoire of epigenetic players in endothelial cells responding to titanium, reinforcing protein related to the metabolism of acetyl and methyl groups, as follows: Histone deacetylases (HDACs) and NAD-dependent deacetylase sirtuin-1 (Sirt1), DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases, which in conjunction culminate in driving chromatin condensation and the methylation profile of DNA strands, respectively. Taking our data into consideration, HDAC6 emerges as important player of this environment-induced epigenetic mechanism in endothelial cells, while Sirt1 is required in response to stimulation of reactive oxygen species (ROS) production, as its modulation is relevant to vasculature surrounding implanted devices. Collectively, all these findings support the hypothesis that titanium keeps the surrounding microenvironment dynamically active and so affects the performance of endothelial cells by modulating epigenetics. Specifically, this study shows the relevance of HDAC6 as a player in this process, possibly correlated with the cytoskeleton rearrangement of those cells. Furthermore, as those enzymes are druggable, it opens new perspectives to consider the use of small molecules to modulate their activities as a biotechnological tool in order to improve angiogenesis and accelerate bone growth with benefits of a fast recovery time for patients.


Epigenetic Differences Arise in Endothelial Cells Responding to Cobalt-Chromium.

  • Célio Junior da C Fernandes‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

Cobalt-chromium (Co-Cr)-based alloys are emerging with important characteristics for use in dentistry, but the knowledge of epigenetic mechanisms in endothelial cells has barely been achieved. In order to address this issue, we have prepared a previously Co-Cr-enriched medium to further treat endothelial cells (HUVEC) for up to 72 h. Our data show there is important involvement with epigenetic machinery. Based on the data, it is believed that methylation balance in response to Co-Cr is finely modulated by DNMTs (DNA methyltransferases) and TETs (Tet methylcytosine dioxygenases), especially DNMT3B and both TET1 and TET2. Additionally, histone compaction HDAC6 (histone deacetylase 6) seems to develop a significant effect in endothelial cells. The requirement of SIRT1 seems to have a crucial role in this scenario. SIRT1 is associated with a capacity to modulate the expression of HIF-1α in response to hypoxia microenvironments, thus presenting a protective effect. As mentioned previously, cobalt is able to prevent HIF1A degradation and maintain hypoxia-related signaling in eukaryotic cells. Together, our results show, for the first time, a descriptive study reporting the relevance of epigenetic machinery in endothelial cells responding to cobalt-chromium, and it opens new perspectives to better understand their repercussions as prerequisites for driving cell adhesion, cell cycle progression, and angiogenesis surrounding this Co-Cr-based implantable device.


Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells.

  • Galina A Ryltseva‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.


Nanohydroxyapatite-Coated Titanium Surface Increases Vascular Endothelial Cells Distinct Signaling Responding to High Glucose Concentration.

  • Anderson M Gomes‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

The success of dental implants depends on osseointegration can be compromised by well-known related adverse biological processes, such as infection and diabetes. Previously, nanohydroxyapatite-coated titanium surfaces (nHA_DAE) have been shown to contain properties that promote osteogenesis by enhancing osteoblast differentiation. In addition, it was hypothesized to drive angiogenesis in high-glucose microenvironments, mimicking diabetes mellitus (DM). On the other hand, the null hypothesis would be confirmed if no effect was observed in endothelial cells (ECs).


Cytotoxicity Induced by Black Phosphorus Nanosheets in Vascular Endothelial Cells via Oxidative Stress and Apoptosis Activation.

  • Hao Dong‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

Black phosphorus (BP), an emerging two-dimensional material with unique optical, thermoelectric, and mechanical properties, has been proposed as bioactive material for tissue engineering. However, its toxic effects on physiological systems remain obscure. The present study investigated the cytotoxicity of BP to vascular endothelial cells. BP nanosheets (BPNSs) with a diameter of 230 nm were fabricated via a classical liquid-phase exfoliation method. Human umbilical vein endothelial cells (HUVECs) were used to determine the cytotoxicity induced by BPNSs (0.31-80 μg/mL). When the concentrations were over 2.5 μg/mL, BPNSs adversely affected the cytoskeleton and cell migration. Furthermore, BPNSs caused mitochondrial dysfunction and generated excessive intercellular reactive oxygen species (ROS) at tested concentrations after 24 h. BPNSs could influence the expression of apoptosis-related genes, including the P53 and BCL-2 family, resulting in the apoptosis of HUVECs. Therefore, the viability and function of HUVECs were adversely influenced by the concentration of BPNSs over 2.5 μg/mL. These findings provide significant information for the potential applications of BP in tissue engineering.


Controlled Delivery of Human Cells by Temperature Responsive Microcapsules.

  • W C Mak‎ et al.
  • Journal of functional biomaterials‎
  • 2015‎

Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line-human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.


Investigation of Cell Adhesion and Cell Viability of the Endothelial and Fibroblast Cells on Electrospun PCL, PLGA and Coaxial Scaffolds for Production of Tissue Engineered Blood Vessel.

  • Morteza Bazgir‎ et al.
  • Journal of functional biomaterials‎
  • 2022‎

Endothelialization of artificial scaffolds is considered an effective strategy for increasing the efficiency of vascular transplantation. This study aimed to compare the biophysical/biocompatible properties of three different biodegradable fibrous scaffolds: Poly (ɛ-caprolactone) (PCL) alone, Poly Lactic-co-Glycolic Acid (PLGA) alone (both processed using Spraybase® electrospinning machine), and Coaxial scaffold where the fiber core and sheath was made of PCL and PLGA, respectively. Scaffold structural morphology was assessed by scanning electron microscope and tensile testing was used to investigate the scaffold tension resistance over time. Biocompatibility studies were carried out with human umbilical vein endothelial cells (HUVEC) and human vascular fibroblasts (HVF) for which cell viability (and cell proliferation over a 4-day period) and cell adhesion to the scaffolds were assessed by cytotoxicity assays and confocal microscopy, respectively. Our results showed that all biodegradable polymeric scaffolds are a reliable host to adhere and promote proliferation in HUVEC and HVF cells. In particular, PLGA membranes performed much better adhesion and enhanced cell proliferation compared to control in the absence of polymers. In addition, we demonstrate here that these biodegradable membranes present improved mechanical properties to construct potential tissue-engineered vascular graft.


Endothelial Cell Responses to a Highly Deformable Titanium Alloy Designed for Vascular Stent Applications.

  • Raluca Ion‎ et al.
  • Journal of functional biomaterials‎
  • 2021‎

Titanium alloys are widely used for biomedical applications due to their good biocompatibility. Nevertheless, they cannot be used for balloon expandable stents due to a lack of ductility compared to cobalt-chromium (Co-Cr) alloys and stainless steels. In this study, a new highly deformable Ti-16Nb-8Mo alloy was designed for such an application. However, the biological performance of a stent material is strongly influenced by the effect exerted on the behavior of endothelial cells. Therefore, the cellular responses of human umbilical vein endothelial cells (HUVECs), including morphological characteristics, cell viability and proliferation, and functional markers expression, were investigated to evaluate the biocompatibility of the alloy in the present study. The in vitro results demonstrated the suitability of this alloy for use as endovascular stents.


Synthesis and biological evaluation of a new polymeric conjugate and nanocarrier with osteotropic properties.

  • Rosario Pignatello‎ et al.
  • Journal of functional biomaterials‎
  • 2012‎

Bone-seeking (osteotropic) drug delivery systems (ODDS) represent an interesting solution for targeting different types of drugs to the bones. In particular, anticancer and antibacterial agents could take advantage of such therapeutic strategy. We have recently developed an innovative approach to this aim: a new osteotropic biomaterial was prepared, based on the conjugation of a poly(lactide-co-glycolide) (PLGA) with the bisphosphonate drug alendronate (PLGA-ALE); its hemo- and cytocompatibility were verified. Starting with this copolymer, an osteotropic nanoparticle system (NP) was produced for the targeted delivery of antineoplastic drugs to osteolytic bone metastases; in particular, doxorubicin was tested as a model drug. The in vitro and in vivo results of the new ODDS are validated in this article. All the experimental data confirmed that the drug retained its activity after loading in the PLGA-ALE NP; they can be thus considered a new promising strategy for active targeting of drugs to bone tissues in different pathological situations.


Sacrificial-Rotating Rod-Based 3D Bioprinting Technique for the Development of an In Vitro Cardiovascular Model.

  • Jooyoung Lee‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

Several studies have attempted to develop complex cardiovascular models, but the use of multiple cell types and poor cell alignments after fabrication have limited the practical application of these models. Among various bioprinting methods, extrusion-based bioprinting is the most widely used in the bioengineering field. This method not only has the potential to construct complex 3D biological structures but it also enables the alignment of cells in the printing direction owing to the application of shear stress to the cells during the printing process. Therefore, this study developed an in vitro cardiovascular model using an extrusion-based bioprinting method that utilizes a rotating rod as a printing platform. The rotating rod was made of polyvinyl alcohol (PVA) and used as a sacrificial rod. This rotating platform approach enabled the printing of longer tubular-vascular structures of multiple shapes, including disease models, and the water-soluble properties of PVA facilitated the isolation of the printed vascular models. In addition, this method enabled the printing of the endothelial cells in the bloodstream direction and smooth muscle cells in the circumferential direction to better mimic the anatomy of real blood vessels. Consequently, a cardiovascular model was successfully printed using a gelatin methacryloyl bioink with cells. In conclusion, the proposed fabrication method can facilitate the fabrication of various cardiovascular models that mimic the alignment of real blood vessels.


Comparative Study of Porous Iron Foams for Biodegradable Implants: Structural Analysis and In Vitro Assessment.

  • Gabriela Gąsior‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

Biodegradable metal systems are the future of modern implantology. This publication describes the preparation of porous iron-based materials using a simple, affordable replica method on a polymeric template. We obtained two iron-based materials with different pore sizes for potential application in cardiac surgery implants. The materials were compared in terms of their corrosion rate (using immersion and electrochemical methods) and their cytotoxic activity (indirect test on three cell lines: mouse L929 fibroblasts, human aortic smooth muscle cells (HAMSC), and human umbilical vein endothelial cells (HUVEC)). Our research proved that the material being too porous might have a toxic effect on cell lines due to rapid corrosion.


Surface Heparinization of a Magnesium-Based Alloy: A Comparison Study of Aminopropyltriethoxysilane (APTES) and Polyamidoamine (PAMAM) Dendrimers.

  • Masoumeh Ebrahimi‎ et al.
  • Journal of functional biomaterials‎
  • 2022‎

Magnesium (Mg)-based alloys are biodegradable metallic biomaterials that show promise in minimizing the risks of permanent metallic implants. However, their clinical applications are restricted due to their rapid in vivo degradation and low surface hemocompatibilities. Surface modifications are critically important for controlling the corrosion rates of Mg-based alloys and improving their hemocompatibilities. In the present study, two heparinization methods were developed to simultaneously increase the corrosion resistance and hemocompatibility of the AZ31 Mg alloy. In the first method, the surface of the AZ31 alloy was modified by alkali-heat treatment and then aminolyzed by 3-amino propyltriethoxy silane (APTES), a self-assembly molecule, and heparin was grafted onto the aminolyzed surface. In the second method, before heparinization, polyamidoamine dendrimers (PAMAM4-4) were grafted onto the aminolyzed surface with APTES to increase the number of surface functional groups, and heparinization was subsequently performed. The presence of a peak with a wavelength of about 1560 cm-1 in the FTIR spectrum for the sample modified with APTES and dendrimers indicated aminolysis of the surface. The results indicated that the corrosion resistance of the Mg alloy was significantly improved as a result of the formation of a passive layer following the alkali-heat treatment. The results obtained from a potentiodynamic polarization (PDP) test showed that the corrosion current in the uncoated sample decreased from 25 µA to 3.7 µA in the alkali-heat-treated sample. The corrosion current density was reduced by 14 and 50 times in samples treated with the self-assembly molecules, APTES and dendrimers, respectively. After heparinization, the clotting time for pristine Mg was greatly improved. Clotting time increased from 480 s for the pristine Mg sample to 630 s for the APTES- and heparin-modified samples and to 715 s for the PAMAM- and heparin-modified samples. Cell culture data showed a slight improvement in the cell-supporting behavior of the modified samples.


Heparin-Loaded Composite Coatings on Porous Stent from Pure Magnesium for Biomedical Applications.

  • Yu-Liang Lai‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

Challenges associated with drug-releasing stents used in percutaneous transluminal coronary angioplasty (PTCA) encompass allergic reactions, prolonged endothelial dysfunction, and delayed stent clotting. Although absorbable stents made from magnesium alloys seem promising, fast in vivo degradation and poor biocompatibility remain major challenges. In this study, zirconia (ZrO2) layers were used as the foundational coat, while calcium phosphate (CaP) served as the surface layer on unalloyed magnesium specimens. Consequently, the corrosion current density was decreased to 3.86, from 13.3 μA/cm2. Moreover, a heparin-controlled release mechanism was created by co-depositing CaP, gelatin (Gel), and heparin (Hep) on the specimens coated with CaP/ZrO2, thereby boosting magnesium's blood compatibility and prolonging the heparin-releasing time. Techniques like X-ray diffractometry (XRD), focused ion beam (FIB) system, toluidine blue testing, UV-visible spectrometry, field emission scanning electron microscopy (FESEM), and surrogate tests for endothelial cell viability were employed to examine the heparin-infused coatings. The drug content rose to 484.19 ± 19.26 μg/cm2 in multi-layered coatings (CaP-Gel-Hep/CaP-Hep/CaP/ZrO2) from 243.56 ± 55.18 μg/cm2 in a single layer (CaP-Hep), with the controlled release spanning beyond 28 days. Also, cellular viability assessments indicated enhanced biocompatibility of the coated samples relative to those without coatings. This suggests the potential of magnesium samples after coating ZrO2 and CaP with Gel as candidates for porous biodegradable stents or even scaffolds in biomedical applications.


Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications.

  • Yasaman Delkash‎ et al.
  • Journal of functional biomaterials‎
  • 2021‎

Three-dimensional (3D) bioprinting is an emerging fabrication technique to create 3D constructs with living cells. Notably, bioprinting bioinks are limited due to the mechanical weakness of natural biomaterials and the low bioactivity of synthetic peers. This paper presents the development of a natural bioink from chicken eggwhite and sodium alginate for bioprinting cell-laden patches to be used in endothelialized tissue engineering applications. Eggwhite was utilized for enhanced biological properties, while sodium alginate was used to improve bioink printability. The rheological properties of bioinks with varying amounts of sodium alginate were examined with the results illustrating that 2.0-3.0% (w/v) sodium alginate was suitable for printing patch constructs. The printed patches were then characterized mechanically and biologically, and the results showed that the printed patches exhibited elastic moduli close to that of natural heart tissue (20-27 kPa) and more than 94% of the vascular endothelial cells survived in the examination period of one week post 3D bioprinting. Our research also illustrated the printed patches appropriate water uptake ability (>1800%).


Biomimetic Liquid Crystal-Modified Mesoporous Silica-Based Composite Hydrogel for Soft Tissue Repair.

  • Xiaoling Li‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous silica nanospheres (MSNs) with liquid crystal (LC) to enhance bioactivity and biocompatibility in vitro. This LC modification facilitated crucial cellular processes such as the proliferation, migration, spreading, and expression of angiogenesis-related genes and proteins in human umbilical vein endothelial cells (HUVECs). Furthermore, we incorporated LC-modified MSN within a hydrogel matrix to create a multifunctional dressing that combines the biological benefits of LC-MSN with the mechanical advantages of a hydrogel. Upon application to full-thickness wounds, these composite hydrogels exhibited accelerated healing, evidenced by enhanced granulation tissue formation, increased collagen deposition, and improved vascular development. Our findings suggest that the LC-MSN hydrogel formulation holds significant promise for the repair and regeneration of soft tissues.


Advanced Platelet Lysate Aerogels: Biomaterials for Regenerative Applications.

  • Fahd Tibourtine‎ et al.
  • Journal of functional biomaterials‎
  • 2024‎

Human platelet lysate (HPL), rich in growth factors, is increasingly recognized for its potential in tissue engineering and regenerative medicine. However, its use in liquid or gel form is constrained by limited stability and handling difficulties. This study aimed to develop dry and porous aerogels from HPL hydrogel using an environmentally friendly supercritical CO2-based shaping process, specifically tailored for tissue engineering applications. The aerogels produced retained their three-dimensional structure and demonstrated significant mechanical robustness and enhanced manageability. Impressively, they exhibited high water absorption capacity, absorbing 87% of their weight in water within 120 min. Furthermore, the growth factors released by these aerogels showed a sustained and favourable biological response in vitro. They maintained the cellular metabolic activity of fibroblasts (BALB-3T3) at levels akin to conventional culture conditions, even after prolonged storage, and facilitated the migration of human umbilical vein endothelial cells (HUVECs). Additionally, the aerogels themselves supported the adhesion and proliferation of murine fibroblasts (BALB-3T3). Beyond serving as excellent matrices for cell culture, these aerogels function as efficient systems for the delivery of growth factors. Their multifunctional capabilities position them as promising candidates for various tissue regeneration strategies. Importantly, the developed aerogels can be stored conveniently and are considered ready to use, enhancing their practicality and applicability in regenerative medicine.


Photochemical Modification of the Extracellular Matrix to Alter the Vascular Remodeling Process.

  • Blake Anderson‎ et al.
  • Journal of functional biomaterials‎
  • 2023‎

Therapeutic interventions for vascular diseases aim at achieving long-term patency by controlling vascular remodeling. The extracellular matrix (ECM) of the vessel wall plays a crucial role in regulating this process. This study introduces a novel photochemical treatment known as Natural Vascular Scaffolding, utilizing a 4-amino substituted 1,8-naphthimide (10-8-10 Dimer) and 450 nm light. This treatment induces structural changes in the ECM by forming covalent bonds between amino acids in ECM fibers without harming vascular cell survival, as evidenced by our results. To further investigate the mechanism of this treatment, porcine carotid artery segments were exposed to 10-8-10 Dimer and light activation. Subsequent experiments subjected these segments to enzymatic degradation through elastase or collagenase treatment and were analyzed using digital image analysis software (MIPAR) after histological processing. The results demonstrated significant preservation of collagen and elastin structures in the photochemically treated vascular wall, compared to controls. This suggests that photochemical treatment can effectively modulate vascular remodeling by enhancing the resistance of the ECM scaffold to degradation. This approach shows promise in scenarios where vascular segments experience significant hemodynamic fluctuations as it reinforces vascular wall integrity and preserves lumen patency. This can be valuable in treating veins prior to fistula creation and grafting or managing arterial aneurysm expansion.


Biodegradable Mg-Sc-Sr Alloy Improves Osteogenesis and Angiogenesis to Accelerate Bone Defect Restoration.

  • Nadia Aboutalebianaraki‎ et al.
  • Journal of functional biomaterials‎
  • 2022‎

Magnesium (Mg) and its alloys are considered to be biodegradable metallic biomaterials for potential orthopedic implants. While the osteogenic properties of Mg alloys have been widely studied, few reports focused on developing a bifunctional Mg implant with osteogenic and angiogenic properties. Herein, a Mg-Sc-Sr alloy was developed, and this alloy's angiogenesis and osteogenesis effects were evaluated in vitro for the first time. X-ray Fluorescence (XRF), X-ray diffraction (XRD), and metallography images were used to evaluate the microstructure of the developed Mg-Sc-Sr alloy. Human umbilical vein/vascular endothelial cells (HUVECs) were used to evaluate the angiogenic character of the prepared Mg-Sc-Sr alloy. A mix of human bone-marrow-derived mesenchymal stromal cells (hBM-MSCs) and HUVEC cell cultures were used to assess the osteogenesis-stimulating effect of Mg-Sc-Sr alloy through alkaline phosphatase (ALP) and Von Kossa staining. Higher ALP activity and the number of calcified nodules (27% increase) were obtained for the Mg-Sc-Sr-treated groups compared to Mg-treated groups. In addition, higher VEGF expression (45.5% increase), tube length (80.8% increase), and number of meshes (37.9% increase) were observed. The Mg-Sc-Sr alloy showed significantly higher angiogenesis and osteogenic differentiation than pure Mg and the control group, suggesting such a composition as a promising candidate in bone implants.


Extracts from New Zealand Undaria pinnatifida Containing Fucoxanthin as Potential Functional Biomaterials against Cancer in Vitro.

  • Sheng Kelvin Wang‎ et al.
  • Journal of functional biomaterials‎
  • 2014‎

This study tested extracts from New Zealand seaweed Undaria pinnatifida containing fucoxanthin, in parallel with pure fucoxanthin, in nine human cancer cell lines, for anticancer activity. Growth inhibition effects of extracts from Undaria pinnatifida were found in all types of cancer cell lines in dose- and time- dependent manners. Cytotoxicity of fucoxanthin in three human non-cancer cell lines was also tested. Compared with pure fucoxanthin, our extracts containing low level of fucoxanthin were found to be more effective in inhibiting the growth of lung carcinoma, colon adenocarcinoma and neuroblastoma. Our results suggest that fucoxanthin is a functional biomaterial that may be used as a chemopreventive phytochemical or in combination chemotherapy. Furthermore, we show for the first time that some unknown compounds with potential selective anti-cancer effects may exist in extracts of New Zealand Undaria pinnatifida, and New Zealand Undaria pinnatifida could be used as a source for either functional biomaterial extraction or production of functional food.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: