Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Infection: a Cause of and Cure for Cancer.

  • Jenna H Newman‎ et al.
  • Current pharmacology reports‎
  • 2017‎

This article provides a brief overview of the role that infections play in cancer emergence and cancer treatment.


Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for Cancer Chemoprevention.

  • Jeffrey M Peters‎ et al.
  • Current pharmacology reports‎
  • 2015‎

The role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cancer remains contentious due in large part to divergent publications indicating opposing effects in different rodent and human cell culture models. During the past 10 years, some facts regarding PPARβ/δ in cancer have become clearer, while others remain uncertain. For example, it is now well accepted that (1) expression of PPARβ/δ is relatively lower in most human tumors as compared to the corresponding non-transformed tissue, (2) PPARβ/δ promotes terminal differentiation, and (3) PPARβ/δ inhibits pro-inflammatory signaling in multiple in vivo models. However, whether PPARβ/δ is suitable to target with natural and/or synthetic agonists or antagonists for cancer chemoprevention is hindered because of the uncertainty in the mechanism of action and role in carcinogenesis. Recent findings that shed new insight into the possibility of targeting this nuclear receptor to improve human health will be discussed.


An Update on Current Therapeutic Drugs Treating COVID-19.

  • Renyi Wu‎ et al.
  • Current pharmacology reports‎
  • 2020‎

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented unprecedented challenges to the healthcare systems in almost every country around the world. Currently, there are no proven effective vaccines or therapeutic agents against the virus. Current clinical management includes infection prevention and control measures and supportive care including supplemental oxygen and mechanical ventilatory support. Evolving research and clinical data regarding the virologic SARS-CoV-2 suggest a potential list of repurposed drugs with appropriate pharmacological effects and therapeutic efficacies in treating COVID-19 patients. In this review, we will update and summarize the most common and plausible drugs for the treatment of COVID-19 patients. These drugs and therapeutic agents include antiviral agents (remdesivir, hydroxychloroquine, chloroquine, lopinavir, umifenovir, favipiravir, and oseltamivir), and supporting agents (Ascorbic acid, Azithromycin, Corticosteroids, Nitric oxide, IL-6 antagonists), among others. We hope that this review will provide useful and most updated therapeutic drugs to prevent, control, and treat COVID-19 patients until the approval of vaccines and specific drugs targeting SARS-CoV-2.


Determination of Potential Drug Candidate Molecules of the Hypericum perforatum for COVID-19 Treatment.

  • Serap Yalçın‎ et al.
  • Current pharmacology reports‎
  • 2021‎

The novel human coronavirus was firstly emerged in December 2019 in Wuhan, China, and has spread rapidly around the world. There is no known specific effective treatment of COVID-19. The most commonly used agents against this disease both in Turkey and around the world include chloroquine, hydroxychloroquine, lopinavir/ritonavir, favipiravir, and remdesivir. In the study, we investigated the drug potential of molecules that the components of an important medicinal plant Hypericum perforatum by using molecular docking and drug possibility properties of these molecules. The molecular docking results showed that the most stable complex was obtained with COVID-19 main protease and hypericin/isohypericin ligands with - 11 kcal/mol binding energy. Furthermore, ADMET, drug-likeness features of compounds of H. perforatum were investigated using the rules of Lipinski, Veber, and Ghose. According to the results obtained, it has been shown that H. perforatum has the potential to be an effective drug in the COVID-19 pandemic. In the next stage, it is necessary to carry out the clinically necessary reliability studies of these components. It is thought that it can be used for the treatment of COVID-19 if our molecular docking results are found to be in high correlation with clinical studies.


Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit Spike Protein of SARS-CoV-2 Binding to ACE2 Receptor: In Silico Approach.

  • Rajan Rolta‎ et al.
  • Current pharmacology reports‎
  • 2021‎

COVID-19, the disease caused by SARS-CoV-2, has been declared as a global pandemic. Traditional medicinal plants have long history to treat viral infections. Our in silico approach suggested that unique phytocompounds such as emodin, thymol and carvacrol, and artemisinin could physically bind SARS-CoV-2 spike glycoproteins (6VXX and 6VYB), SARS-CoV-2 B.1.351 South Africa variant of Spike glycoprotein (7NXA), and even with ACE2 and prevent the SARS-CoV-2 binding to the host ACE2, TMPRSS2 and neutrapilin-1 receptors. Since Chloroquine has been looked as potential therapy against COVID-19, we also compared the binding of chloroquine and artemisinin for its interaction with spike proteins (6VXX, 6VYB) and its variant 7NXA, respectively. Molecular docking study of phytocompounds and SARS-CoV-2 spike protein was performed by using AutoDock/Vina software. Molecular dynamics (MD) simulation was performed for 50ns. Among all the phytocompounds, molecular docking studies revealed lowest binding energy of artemisinin with 6VXX and 6VYB, with Etotal -10.5 KJ mol-1 and -10.3 KJ mol-1 respectively. Emodin showed the best binding affinity with 6VYB with Etotal -8.8 KJ mol-1and SARS-CoV-2 B.1.351 variant (7NXA) with binding energy of -6.4KJ mol-1. Emodin showed best interactions with TMPRSS 2 and ACE2 with Etotal of -7.1 and -7.3 KJ mol-1 respectively, whereas artemisinin interacts with TMPRSS 2 and ACE2 with Etotal of -6.9 and -7.4 KJ mol-1 respectively. All the phytocompounds were non-toxic and non-carcinogenic. MD simulation showed that artemisinin has more stable interaction with 6VYB as compared to 6VXX, and hence proposed as potential phytochemical to prevent SARS-CoV-2 interaction with ACE-2 receptor.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: