Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Exercise improves depressive symptoms by increasing the number of excitatory synapses in the hippocampus of CUS-Induced depression model rats.

  • Xin Liang‎ et al.
  • Behavioural brain research‎
  • 2019‎

Exercise has been considered for the treatment of depression, but the mechanism by which exercise improves depression is still unclear. To clarify the mechanism, rats were randomly divided into the control, chronic unpredictable stress (CUS)/standard and CUS/running groups. The rats in the CUS/running group ran for four weeks. In this study, a sucrose preference test (SPT) was used to evaluate the depression-like symptoms in the rats, and western blot, immunohistochemical and stereological analyses were performed to study the expression of synaptic-related proteins in the hippocampus and the changes in excitatory synapses in each sub-region. The results show that sucrose preference in the CUS/standard group was significantly lower than that in the control group, but in the CUS/running group, sucrose preference was higher than that in the CUS/standard group. Surprisingly, there was no difference in the synaptic-related proteins in the hippocampus among groups. The CUS/standard group exhibited fewer spinophilin+ (Sp+) dendritic spines representing excitatory synapses in CA1, CA3 and dentate gyrus (DG) of the hippocampus than the control group, whereas the CUS/running group exhibited significantly more Sp+ dendritic spines in these regions than the CUS/standard group, indicating that excitatory synapses were reduced in depressed rats and that running exercises could reverse this change. We hypothesize that the changes in the number of excitatory synapses better reflect the changes in depressive symptoms than the level of synaptic proteins and that the effect of exercise on excitatory synapses in the sub-regions of the hippocampus may be an important structural indicator of the improvement of depressive symptoms.


Anti-LINGO-1 antibody treatment improves chronic stress-induced spatial memory impairments and oligodendrocyte loss in the hippocampus.

  • Chunmao Yang‎ et al.
  • Behavioural brain research‎
  • 2020‎

Chronic exposure to stressful conditions may affect spatial learning and memory abilities and the brain structure, and disruptions in oligodendrocyte function may cause cognitive dysfunction. Leucine-rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1) is a potent negative regulator of oligodendrocytes and axon myelination. However, the questions we sought to answer in this study are whether hippocampal oligodendrocytes are involved in the pathological process of spatial learning and memory impairments induced by chronic stress (CS) and whether antibodies targeting LINGO-1 improve stress-induced spatial learning and memory impairments by protecting the hippocampal oligodendrocytes in stressed rats. After 4 weeks of CS, rats were randomly divided into either the CS standard group or anti-LINGO-1 group. The anti-LINGO-1 group was treated with an anti-LINGO-1 antibody (8 mg/kg) for 3 weeks; all rats were assessed in the Morris water maze. Immunohistochemical staining and modern stereological methods were used to precisely quantify the total number of 2',3'-cyclic nucleotide 3'-phosphodiesterase-positive (CNPase+) oligodendrocytes in each subregion of the hippocampus. At the behavioural level, after three weeks of treatment, the anti-LINGO-1 group displayed significantly more platform crossings in the Morris water maze test than the CS standard group. The total swimming distance and swimming speed were not significantly different. In the open field test, the percentage of distance travelled in the central region did not differ between the CS standard group and control group or between the anti-LINGO-1 group and the CS standard group. Unbiased stereological analyses revealed significantly greater total numbers of CNPase+ cells in the CA3 and dentate gyrus (DG) areas of the hippocampus in the anti-LINGO-1 group than in the CS standard group. A significant difference in the total number of CNPase+ cells was not observed in the hippocampal CA1 region between the anti-LINGO-1 and CS standard groups. Based on the results of the present study, the anti-LINGO-1 antibody alleviated spatial memory impairments and protected oligodendrocytes in the hippocampus of chronically stressed rats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: