Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 507 papers

Association between HLA-DRB1 alleles polymorphism and hepatocellular carcinoma: a meta-analysis.

  • Zhong-Hua Lin‎ et al.
  • BMC gastroenterology‎
  • 2010‎

HLA-DRB1 allele polymorphisms have been reported to be associated with hepatocellular carcinoma susceptibility, but the results of these previous studies have been inconsistent. The purpose of the present study was to explore whether specific HLA-DRB1 alleles (DRB1*07, DRB1*12, DRB1*15) confer susceptibility to hepatocellular carcinoma.


Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits.

  • Ying Sun‎ et al.
  • Human molecular genetics‎
  • 2010‎

Gaucher disease is caused by defective acid beta-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C-/-) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities approximately 30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred approximately 48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C-/- alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.


Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1.

  • Baolei Jia‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase) were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.


Adenovirus-mediated co-expression of the TRAIL and HN genes inhibits growth and induces apoptosis in Marek's disease tumor cell line MSB-1.

  • Dongxiao Dong‎ et al.
  • Cancer cell international‎
  • 2015‎

The objective of this study was to determine the in vitro tumor-inhibitory effect of a recombinant adenovirus expressing a fusion protein of tumor necrosis factor (TNF) related apoptosis inducing ligand (TRAIL) and hemagglutinin-neuraminidase (HN) genes on the MSB-1 Marek's disease tumor cell line.


Effects of dimethylaminoethanol and compound amino acid on D-galactose induced skin aging model of rat.

  • Su Liu‎ et al.
  • TheScientificWorldJournal‎
  • 2014‎

A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.


Rotenone remarkably attenuates oxidative stress, inflammation, and fibrosis in chronic obstructive uropathy.

  • Ying Sun‎ et al.
  • Mediators of inflammation‎
  • 2014‎

Mitochondrial abnormality has been shown in many kidney disease models. However, its role in the pathogenesis of chronic kidney diseases (CKDs) is still uncertain. In present study, a mitochondrial complex I inhibitor rotenone was applied to the mice subjected to unilateral ureteral obstruction (UUO). Following 7-days rotenone treatment, a remarkable attenuation of tubular injury was detected by PAS staining. In line with the improvement of kidney morphology, rotenone remarkably blunted fibrotic response as shown by downregulation of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), collagen I, collagen III, and α-SMA, paralleled with a substantial decrease of TGF-β 1. Meanwhile, the oxidative stress markers thiobarbituric acid-reactive substances (TBARS) and heme oxygenase 1 (HO-1) and inflammatory markers TNF-α, IL-1β, and ICAM-1 were markedly decreased. More importantly, the reduction of mitochondrial DNA copy number and mitochondrial NADH dehydrogenase subunit 1 (mtND1) expression in obstructed kidneys was moderately but significantly restored by rotenone, suggesting an amelioration of mitochondrial injury. Collectively, mitochondrial complex I inhibitor rotenone protected kidneys against obstructive injury possibly via inhibition of mitochondrial oxidative stress, inflammation, and fibrosis, suggesting an important role of mitochondrial dysfunction in the pathogenesis of obstructive kidney disease.


Preparation of bufalin-loaded pluronic polyetherimide nanoparticles, cellular uptake, distribution, and effect on colorectal cancer.

  • Qiang Hu‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

A large number of studies have shown that bufalin can have a significant antitumor effect in a variety of tumors. However, because of toxicity, insolubility in water, fast metabolism, short half-life, and other shortcomings, its application is limited in cancer therapy. In this study, we explored the anti-metastatic role of bufalin-loaded pluronic polyetherimide nanoparticles on HCT116 colon cancer-bearing mice. Nanoparticle size, shape, drug loading, encapsulation efficiency, and in vitro drug release were studied. Also, cellular uptake of nanoparticles, in vivo tumor targeting, and tumor metastasis were studied. The nanoparticles had a particle size of about 60 nm and an encapsulation efficiency of 75.71%, by weight. The in vitro release data showed that free bufalin was released faster than bufalin-loaded pluronic polyetherimide nanoparticles, and almost 80% of free bufalin was released after 32 hours. Nanoparticles had an even size distribution, were stable, and had a slow release and a tumor-targeting effect. Bufalin-loaded pluronic polyetherimide nanoparticles can significantly inhibit the growth and metastasis of colorectal cancer.


Targeting Glutathione S-transferase M4 in Ewing sarcoma.

  • Rupeng Zhuo‎ et al.
  • Frontiers in pediatrics‎
  • 2014‎

Ewing sarcoma is a malignant pediatric bone and soft tissue tumor. Although the 5-year survival rate of localized disease approaches 75%, the prognosis of metastatic and/or therapy-resistant disease remains dismal despite the wide use of aggressive therapeutic strategies. We previously reported that high expression of glutathione S-transferase M4 (GSTM4) in primary tumors correlates with poor patient outcomes. GSTM4 is required for oncogenic transformation and mediates resistance to chemotherapeutic drugs in Ewing sarcoma cells. Here, we performed RNA-sequencing analyses of Ewing sarcoma cells and combined our results with publicly available datasets to demonstrate that GSTM4 is a major GST specifically expressed in Ewing sarcoma. Pharmacological inhibition of GSTM4 activity using a pan GST inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), significantly limited cellular proliferation and oncogenic transformation of Ewing sarcoma cells. Moreover, combined use of NBDHEX and etoposide synergistically increased cytotoxicity, suggesting a role for GSTM4 as an inhibitor of apoptosis. Mechanistic studies revealed that GSTM4 limits apoptosis owing to its ability to interact with Apoptosis Signal-regulating Kinase 1 (ASK1) and inhibit signaling via the c-Jun N-terminal Kinase axis. To exploit our observation that GSTM4 expression is specifically up-regulated in Ewing sarcoma, we tested the effect of a GSTM4-activated anti-cancer agent, O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate or JS-K, on tumor growth and survival. We found that JS-K robustly decreased Ewing sarcoma cell viability and xenograft tumor growth and improved overall survival of xenograft mice. Our data suggest that GSTM4 is a novel therapeutic target for the treatment of high GSTM4-expressing Ewing sarcoma. Strategies that combine standard chemotherapy with agents that inhibit GSTM4, that are activated by GSTM4, or that block GSTM4/ASK1 interactions, can potentially be more specific and/or efficacious than standard therapeutic approaches.


Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study.

  • Jia-Wei Lv‎ et al.
  • Oncotarget‎
  • 2016‎

We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary end-point was overall survival (OS); progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P <0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA.


Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease.

  • Mei Dai‎ et al.
  • PloS one‎
  • 2016‎

To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD.


Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels.

  • Jianfang Cao‎ et al.
  • International journal of molecular medicine‎
  • 2015‎

The protective effects of sevoflurane post-conditioning against myocardial ischemia/reperfusion (I/R) injury (MIRI) have been previously reported. However, the mechanisms responsible for these protective effects remain elusive. In this study, in order to investigate the molecular mechanisms responsible for the protective effects of sevoflurane post-conditioning on isolated rat hearts subjected to MIRI, Sprague-Dawley rat hearts were randomly divided into the following 6 groups: i) the sham-operated control; ii) 2.5% sevoflurane; iii) ischemia/reperfusion (I/R); iv) 2.5% sevoflurane post-conditioning plus I/R; v) 2.5% sevoflurane post-conditioning + NG-nitro-L-arginine methyl ester (L-NAME) plus I/R; and vi) L-NAME plus I/R. The infarct size was measured using 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Additionally, the myocardial nitric oxide (NO), NO synthase (NOS) and nicotinamide adenine dinucleotide (NAD+) levels were determined. Autophagosomes and apoptosomes in the myocardium were detected by transmission electron microscopy. The levels of Bcl-2, cleaved caspase-3, Beclin-1, microtubule-associated protein light chain 3 (LC3)‑I/II, Na+/H+ exchanger 1 (NHE1) and phosphorylated NHE1 protein were measured by western blot analysis. NHE1 mRNA levels were measured by reverse transcription-quantitative polymerase chain reaction. Compared with the I/R group, 15 min of exposure to 2.5% sevoflurane during early reperfusion significantly decreased the myocardial infarct size, the autophagic vacuole numbers, the NHE1 mRNA and protein expression of cleaved caspase-3, Beclin-1 and LC3-I/II. Post-conditioning with 2.5% sevoflurane also increased the NO and NOS levels and Bcl-2 protein expression (p<0.05 or p<0.01). Notably, the cardioprotective effects of sevoflurane were partly abolished by the NOS inhibitor, L-NAME. The findings of the present study suggest that sevoflurane post-conditioning protects the myocardium against I/R injury and reduces the myocardial infarct size. The underlying protective mechanisms are associated with the inhibition of mitochondrial permeability transition pore opening, and with the attenuation of cardiomyoctye apoptosis and excessive autophagy. These effects are mediated through an increase in NOS and a decrease in phopshorylated NHE1 levels.


Inhibition of Mitochondrial Complex-1 Prevents the Downregulation of NKCC2 and ENaCα in Obstructive Kidney Disease.

  • Yue Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

Ureteral obstruction with subsequent hydronephrosis is a common clinical complication. Downregulation of renal sodium transporters in obstructed kidneys could contribute to impaired urinary concentrating capability and salt waste following the release of a ureteral obstruction. The current study was undertaken to investigate the role of mitochondrial complex-1 inhibition in modulating sodium transporters in obstructive kidney disease. Following unilateral ureteral obstruction (UUO) for 7 days, a global reduction of sodium transporters, including NHE3, α-Na-K-ATPase, NCC, NKCC2, p-NKCC2, ENaCα, and ENaCγ, was observed, as determined via qRT-PCR and/or Western blotting. Interestingly, inhibition of mitochondrial complex-1 by rotenone markedly reversed the downregulation of NKCC2, p-NKCC2, and ENaCα. In contrast, other sodium transporters were not affected by rotenone. To study the potential mechanisms involved in mediating the effects of rotenone on sodium transporters, we examined a number of known sodium modulators, including PGE2, ET1, Ang II, natriuretic peptides (ANP, BNP, and CNP), and nitric oxide synthases (iNOS, nNOS, and eNOS). Importantly, among these modulators, only BNP and iNOS were significantly reduced by rotenone treatment. Collectively, these findings demonstrated a substantial role of mitochondrial dysfunction in mediating the downregulation of NKCC2 and ENaCα in obstructive kidney disease, possibly via iNOS-derived nitric oxide and BNP.


Inhibition of mitochondrial complex-1 restores the downregulation of aquaporins in obstructive nephropathy.

  • Ying Sun‎ et al.
  • American journal of physiology. Renal physiology‎
  • 2016‎

Obstructive kidney disease is a common complication in the clinic. Downregulation of aquaporins (AQPs) in obstructed kidneys has been thought as a key factor leading to the polyuria and impairment of urine-concentrating capability after the release of kidney obstruction. The present study was to investigate the role of mitochondrial complex-1 in modulating AQPs in obstructive nephropathy. Following 7-day unilateral ureteral obstruction (UUO), AQP1, AQP2, AQP3, and vasopressin 2 (V2) receptor were remarkably reduced as determined by qRT-PCR and/or Western blotting. Notably, inhibition of mitochondrial complex-1 by rotenone markedly reversed the downregulation of AQP1, AQP2, AQP3, and V2 In contrast, AQP4 was not affected by kidney obstruction or rotenone treatment. In a separate study, rotenone also attenuated AQPs' downregulation after 48-h UUO. To study the potential mechanisms in mediating the rotenone effects on AQPs, we examined the regulation of the COX-2/microsomal prostaglandin E synthase (mPGES)-1/PGE2/EP pathway and found that COX-2, mPGES-1, and renal PGE2 content were all significantly elevated in obstructive kidneys, which was not affected by rotenone treatment. For EP receptors, EP2 and EP4 but not EP1 and EP3 were upregulated in obstructive kidneys. Importantly, rotenone strikingly suppressed EP1 and EP4 but not EP2 and EP3 receptors. However, treatment of EP1 antagonist SC-51322 could not affect AQPs' reduction in obstructed kidneys. Collectively, these findings suggested an important role of mitochondrial dysfunction in modulating AQPs and V2 receptor in obstructive nephropathy possibly via prostaglandin-independent mechanisms.


YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway.

  • Jian Zhang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Metastasis remains the major cause of death in nasopharyngeal carcinoma (NPC). Yippee-like 3 (YPEL3) plays an important role in tumorigenesis. However, its function and mechanism in NPC has not been systematically explored.


Regenerative repair of Pifithrin-α in cerebral ischemia via VEGF dependent manner.

  • Ping Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Promoting regenerative repair, including neurogenesis and angiogenesis, may provide a new therapeutic strategy for treatment of stroke. P53, a well-documented transcription factor, has been reported to be involved in cerebral ischemia and also serves as an important regulator of vascular endothelial growth factor (VEGF). However, the role of p53 in endogenous regenerative repair after brain ischemia is poorly understood. In this study, we investigated the effects of PFT-α, a specific p53 inhibitor on neurogenesis and angiogenesis improvement and associated signal pathways in rats impaired by cerebral artery occlusion (MCAo). PFT-α induced neuroprotection, reduced infarct volume and neurological functional impairment after ischemic stroke. More importantly, neurogenesis and angiogenesis were greatly enhanced by PFT-α, and accompanied by increased expression of VEGF. Moreover, we got consistent results in neural stem cells (NSCs) isolated from fetal rats. In contrast, application of the anti-VEGF neutralizing antibody (RB-222) partially reversed PFT-α-induced neuroprotection and rescued p53 expression. Noteworthily, inhibition of p53 after ischemic stroke in these rats improved their outcomes via promotion of regenerative repair. In conclusion, PFT-α could serve as a promising therapeutic strategy for ischemic stroke by promoting regenerative repair.


A H 2 S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice.

  • Mi Liu‎ et al.
  • Mediators of inflammation‎
  • 2016‎

Accumulating evidence demonstrated that hydrogen sulfide (H2S) is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN) and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS) and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response.


Characterization of Coxsackievirus A6- and Enterovirus 71-Associated Hand Foot and Mouth Disease in Beijing, China, from 2013 to 2015.

  • Jie Li‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Etiology surveillance of Hand Foot and Mouth disease (HFMD) in Beijing showed that Coxsackievirus A6 (CVA6) became the major pathogen of HFMD in 2013 and 2015. In order to understand the epidemiological characteristics and clinical manifestations of CVA6-associated HFMD, a comparison study among CVA6-, EV71- (Enterovirus 71), and CVA16- (Coxsackievirus A16) associated HFMD was performed.


Low BRMS1 expression promotes nasopharyngeal carcinoma metastasis in vitro and in vivo and is associated with poor patient survival.

  • Rui-Xue Cui‎ et al.
  • BMC cancer‎
  • 2012‎

Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene. This study aimed to investigate the impact of BRMS1 on metastasis in nasopharyngeal carcinoma (NPC) and to evaluate the prognostic significance of BRMS1 in NPC patients.


A new antifibrotic target of Ac-SDKP: inhibition of myofibroblast differentiation in rat lung with silicosis.

  • Hong Xu‎ et al.
  • PloS one‎
  • 2012‎

Myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, is a key process in organ fibrosis, and is induced by TGF-β. Here we examined whether an anti-fibrotic agent, N-acetyl-seryl-aspartyl-lysylproline (Ac-SDKP), can regulate induction of TGF-β signaling and myofibroblast differentiation as a potential key component of its anti-fibrotic mechanism in vivo and in vitro.


Degenerate primer design to clone the human repertoire of immunoglobulin heavy chain variable regions.

  • Ying Sun‎ et al.
  • World journal of microbiology & biotechnology‎
  • 2012‎

Amplifying the variable (Fv or V) regions of immunoglobulins (Ig) has become a challenge in cloning antibody genes for phage display, a technique used to study protein-protein, protein-peptide, and protein-DNA interactions using bacteriophages to connect proteins with the genetic information that encodes them. Key parameters affecting the amplification of full antibody repertoires includes the availability of primers that can amplify as many V genes as possible; however the strategy used to design these primers and programs used to make the necessary alignments have not been well studied and clearly detailed in the literature. Here, we present a set of primers computationally designed by iCODEHOP based on a database of human germline Ig sequences. We used reverse transcription polymerase chain reaction (RT-PCR) protocols that would recognize the V(H) genes from human peripheral blood mononuclear cells. We identified the most highly conserved region in framework 1 and framework 4 of the Ig cDNA, and designed a set of degenerated 5' primers. The V(H) genes were successfully amplified by RT-PCR. This new primer has facilitated the creation of more diverse V(H) libraries than has been previously possible. Moreover, iCODEHOP improved the primer design efficiency and was found useful both for cloning unknown genes in gene families and for building V(H) gene libraries.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: