Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Genetic diversities of 20 novel autosomal STRs in Chinese Xibe ethnic group and its genetic relationships with neighboring populations.

  • Hao-Tian Meng‎ et al.
  • Gene‎
  • 2015‎

In the present study, we investigated the genetic polymorphisms of 20 novel STR loci and one previously studied locus in the Xibe ethnic group from China, as well as its genetic relationships with neighboring populations. Totally 226 unrelated healthy Xibe individuals were involved in the study. At least 5 alleles were observed for each locus, with the minimum and maximum allelic frequencies of 0.0022 and 0.5221, respectively. We obtained the lowest and highest observed heterozygosity and expected heterozygosity at locus D1S1627 and D19S433, respectively. The values of combined power of discrimination and probability of exclusion of all the 21 STR loci were 0.99999999999999999997310 and 0.999998650, respectively. Analyses of interpopulation differentiation, principal component analysis, genetic distance and phylogenetic tree revealed the relationships between Xibe group and its neighboring groups, showing that the studied Xibe group had a close genetic relationship with the Mongolian group. The present results indicated that these 21 STR loci had high genetic polymorphisms in the studied Xibe group, and were capable for the paternity testing and individual identification in forensic application.


Cloning, distribution and effects of fasting status of melanocortin 4 receptor (MC4R) in Schizothorax prenanti.

  • Rongbin Wei‎ et al.
  • Gene‎
  • 2013‎

Melanocortin 4 receptor (MC4R) has an important role in the regulation of energy homeostasis in both mammals and fish. In this study, MC4R was characterized in S. prenanti (Schizothorax prenanti) and designated as SpMC4R. SpMC4R cDNA is composed of 1004 nucleotides with a 978 nucleotide open reading frame encoding a protein of 326 amino acids. The SpMC4R contained predicted regions that were structural features of MCR subtypes of vertebrates. In addition, phylogenetic analyses suggested that S. prenanti MC4R was closely related to fish MC4Rs. The SpMC4R mRNA was detected in embryos at developmental stages. Further, its mRNA was detectable in unfertilized eggs. Using real-time RT-PCR, MC4R is widely expressed, with highest levels of expression in brain and ovary. An experiment was conducted to determine the expression profile of MC4R during short-term and long-term fasting of the brain. The expression level of MC4R in unfed fish was significantly increased at 6, 9 and 24h post-fasting (hpf) and 14days fasting than in fed fish, this suggests that MC4R is conserved peptide that might be involved in the regulation of food intake and other physiological function in S. prenanti.


High throughput sequencing identifies breast cancer-secreted exosomal LncRNAs initiating pulmonary pre-metastatic niche formation.

  • Tongbao Feng‎ et al.
  • Gene‎
  • 2019‎

Increasing evidence indicated that cancer-secreted exosomes played an important role in tumor metastasis. However, the function of exosomes in breast cancer pulmonary metastasis remains unknown. The aim of the study was to investigate the role of exosome-derived from breast cancer-secreted long non-coding RNAs (LncRNAs) on pre-metastatic niche formation in pulmonary metastasis.


Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L.): Unveiling evolution and patterns in response to abiotic stresses.

  • Bernard Kinuthia Karanja‎ et al.
  • Gene‎
  • 2019‎

Main conclusion Among 247 RsAP2/ERF identified, the majority of the 21 representatives were preferably expressed under drought and heat while suppressed under heavy metals, indicating their potential roles in abiotic stress responses and tolerance. APETALA2/Ethylene-Responsive factor (AP2/ERF) transcription factor (TF) is one of the largest gene families in plants that play a fundamental role in growth and development as well as biotic and/or abiotic stresses responses. Although AP2/ERFs have been extensively characterized in many plant species, little is known about this family in radish, which is an important root vegetable with various medicinal properties. The available genome provides valuable opportunity to identify and characterize the global information on AP2/ERF TFs in radish. In this study, a total of 247 ERF family genes were identified from the radish genome, and sequence alignment and phylogenetic analyses classified the AP2/ERF superfamily into five groups (AP2, ERF, DREB, RAV and soloist). Motif analysis showed that other than AP2/ERF domains, other conserved regions were selectively distributed among different clades in the phylogenetic tree. Chromosome location analysis showed that tandem duplication may result in the expansion of RsAP2/ERF gene family. The RT-qPCR analysis confirmed that a proportion of AP2/ERF genes were preferably expressed under drought and heat stresses, whereas they were suppressed under the ABA and heavy metal stresses. These results provided valuable information for further evolutionary and functional characterization of RsAP2/ERF genes, and contributed to genetic improvement of stress tolerances in radish and other root vegetable crops.


UvHrip1, an effector secreted by Ustilaginoidea virens, suppresses basal defense and promotes disease development in Arabidopsis thaliana.

  • Shuai Li‎ et al.
  • Gene‎
  • 2020‎

Rice false smut (RFS), caused by Ustilaginoidea virens, is one of the most detrimental rice fungal diseases and pose a severe threat to rice production and quality. Effectors in U. virens often act as a set of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of each effector in U. virens need to be further explored. Here, a conserved small secreted hypersensitive response-inducing protein (hrip) was named UvHrip1. Functional validation was investigated to prove that UvHrip1 suppressed cell death symptom and ROS accumulation in Nicotiana benthamiana triggered by Burkholderia glumae. We performed transgenic technology to demonstrate UvHrip1 remarkably inhibited pathogen-associated molecular pattern-induced defense responses in Arabidopsis seedlings and plants, including the expression of defense-response genes. Furthermore, disease progression caused by the type III secretion system-defective mutant from Pseudomonas syringae pv. tomato DC3000 was strongly facilitated in transgenic Arabidopsis ectopic expressing UvHrip1. Our data demonstrated UvHrip1 suppresses plant innate immunity and promoting disease multiplication in Arabidopsis.


Genome-wide characterization of Histone gene family and expression profiling during microspore development in radish (Raphanus sativus L.).

  • Qijiao Wang‎ et al.
  • Gene‎
  • 2022‎

Histone, a predominant protein component of chromatin, participates in DNA packaging and transcriptional regulation. However, the available information of Histone gene family is limited in radish. In this study, a total of 42 Histone gene family members were identified from the radish genome. Sequence alignment and phylogenetic analyses classified the Histone family into three groups (H2A, H2B and H3). Motif analysis showed that the functions of some motifs shared by H3 subfamily genes were related to chromosome regulation and cell development activities, such as motif 5 containing Cks1 and PPR region. Analysis of intron/exon structure indicated that RsCENH3 (RsHistone 18) has the characteristics of variant Histone. Furthermore, several motifs, including the LTR, G-box and TC-elements, were found in the promoters of RsHistone genes, which involved in cell development or various abiotic stresses responses. Transcriptome analysis indicated that the RsHistone genes exhibited higher expression level in floral buds than in roots and leaves. Subcellular localization showed that the RsCENH3 was localized on the nucleus, and it was highly expressed in the floral bud of 3.0-4.0 mm in radish. These findings would provide valuable information for characterization and potential utilization of Histone genes, and facilitate the efficient induction of double haploid plants in radish.


Plectin regulates Wnt signaling mediated-skeletal muscle development by interacting with Dishevelled-2 and antagonizing autophagy.

  • Huadong Yin‎ et al.
  • Gene‎
  • 2021‎

Skeletal muscle is the most abundant tissue in the human and animal body, loss of its function can lead to muscle aging and various myogenic diseases. The skeletal muscle development is a complex and tightly regulated process, which is driven by a variety of many factors, signaling pathways and regulatory mechanisms. Plectin (Plec), a cytolinker protein, is ubiquitously expressed in various tissues such as skin, muscle, plasma membrane, and most types of cells. Although known isoforms of Plec is well-characterized in muscle dystrophy, very little is known on the function of Plec in the skeletal muscle development. Here, we found that Plec plays a vital role in promoting C2C12 myoblasts differentiation and proliferation, but inhibits their apoptosis. Also, Plec regulates the expression of atrophy-related genes (atrogin-1 and muRF-1) to rescue muscle atrophy. Furthermore, we have demonstrated that Plec binds to Dishevelled-2 (Dvl-2) and forms a protein complex, which is then activate the canonical Wnt signaling. We also observed that Plec resists ubiquitination by stabilizing Dvl-2 and reduces the level of LC3-labeled Dvl-2 and antagonizes the autophagy system. In conclusion, our findings suggest that Plec regulates canonical Wnt signaling mediated skeletal development by stabilizing Dvl-2 and downregulating the cellular autophagic degradation system.


Schizothorax davidi ghrelin: cDNA cloning, tissue distribution and indication for its stimulatory character in food intake.

  • Chaowei Zhou‎ et al.
  • Gene‎
  • 2014‎

Ghrelin is a gut/brain hormone with a unique acyl modification and various biological functions in fish and mammals. The objectives of this project were to identify ghrelin gene organization, study tissue specific ghrelin mRNA expression and investigate the short- (0, 0.5, 1.5, 3, 6, 9, 12h post-fasting) and long- (1, 3, 5, 7 days) term fasting as well as refeeding after a 7 day fasting induced changes in the expression of ghrelin mRNA in Schizothorax davidi. Our reverse transcription polymerase chain reaction analysis confirmed the predicted ghrelin sequence available in the GenBank and identified ghrelin mRNA expression in several tissues including the gut, liver, brain, heart, spleen, head kidney, gill and muscle. Quantitative PCR studies indicated that the expression level of ghrelin mRNA presented ascendant trend in short-term fasting group compared to the fed group, but it did not reach the significant level on statistics, while there is a significant increase in ghrelin mRNA expression in the gut of Schizothorax davidi fasted for 3, 5 and 7 days when compared to the expression in ad libitum fed fish. Refeeding after a 7 day fasting caused a significant and dramatic decrease in ghrelin mRNA expression in the gut of Schizothorax davidi. An increase in the expression of ghrelin mRNA during fasting, and its decrease following refeeding suggests an orexigenic role for ghrelin in Schizothorax davidi. Overall, our results provide evidence for a highly conserved structure and biological actions of ghrelin during evolution.


Identification of long noncoding RNA expression profile in oxaliplatin-resistant hepatocellular carcinoma cells.

  • Xin Yin‎ et al.
  • Gene‎
  • 2017‎

Hepatocellular carcinoma (HCC) is the most prevalent and malignant type of liver cancer. Besides the high incidence, the resistance to chemotherapy is a major problem that leads to the high mortality of HCC. Recently, aberrant expression of long noncoding RNAs (lncRNAs) has been considered as a primary feature of many types of cancer. However, the genome-wide expression pattern and associated functional implications of lncRNAs in chemo-resistant HCC cells remain unknown. In this study, we identified 120 differentially expressed lncRNAs with 61 up-regulated and 59 down-regulated (fold change>2, p<0.05) along with 421 differentially expressed mRNAs with 228 up-regulated and 193 down-regulated (fold change>2, p<0.05) in oxaliplatin-resistant (MHCC97H-OXA) HCC cells, compared to parental oxaliplatin-sensitive (MHCC97H) by microarray. The underlying pathways were related to cell death, proliferation, cellular response to stimulus, including p53 pathway, ErbB pathway and MAPK pathway. Further, 16 lncRNAs were selected for validation of microarray results with quantitative PCR, and a strong correlation was identified between the qPCR results and microarray data. We demonstrated for the first time that ENST00000438347, NR_073453 and ENST00000502804 were up-regulated in MHCC97H-OXA cells as well as chemo-resistant HCC cancerous tissues. Moreover, the expression of ENST00000518376 was significantly associated with the tumor size and differentiation. Overall survival analysis showed that high expression of ENST00000438347 and ENST00000518376 was associated with poor prognosis in HCC patients. Taken together, our results reveal that the expression profile in oxaliplatin-resistant HCC is significantly altered including lncRNAs. And a series of de novo lncRNAs play important functions in HCC oxaliplatin resistance and HCC progression.


The complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) with phylogenetic implications for freshwater crabs.

  • Jun Bai‎ et al.
  • Gene‎
  • 2018‎

In the present study, we determined the complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) for the first time. The genome is 15,380bp in length and typically consists of 37 genes. When the gene order was compared to the ancestral crustacean type, two tRNA genes (tRNAHis and tRNAGln) were rearranged in H. lichuanense, and the translocation of tRNAGln appeared only in Potamoidea crabs, such as Geothelphusa dehaani and Sinopotamon xiushuiense, supporting the monophyly of the Potamoidea superfamily. Thirteen protein-coding genes and 2 rRNA genes were divided into five complexes to perform the phylogenetic analysis, and the results showed that the trees constructed by complex I (ND1-ND6 and ND4L), complex IV (COX1-COX3) and rRNA genes better accord with the morphological classification system, suggesting that molecular markers of higher-level phylogeny can be developed in these three complexes in the future. The estimated divergence time for freshwater crabs is approximately 133.58Ma, and G. dehaani from Japan diverged from the freshwater crabs of mainland China approximately 60.66Ma. A selective pressure analysis based on current data revealed obviously increasing dN/dS ratios (except for ATP6 and ND4L) of freshwater crabs, and the accumulation of nonsynonymous mutations suggests that terrestrial habitats provide a relatively relaxed selective pressure environment for this group.


Comparison of the role of HHIP SNPs in susceptibility to chronic obstructive pulmonary disease between Chinese Han and Mongolian populations.

  • Guihua Xu‎ et al.
  • Gene‎
  • 2017‎

The contribution of risk alleles to chronic obstructive pulmonary disease (COPD) may vary between populations. This study aimed to investigate the role of single nucleotide polymorphisms (SNPs) in HHIP on COPD susceptibility in the Chinese Mongolian and Han populations from Inner Mongolia autonomous region. In this case-control study, five SNPs in HHIP gene were detected in 700 COPD patients (350 Chinese Han and 350 Chinese Mongolian) and 700 healthy controls (350 Chinese Han and 350 Chinese Mongolian). The genotype, the association with COPD, and the differences between Chinese Han and Mongolian populations were evaluated using the chi-squared (χ2) test, genetic models, and logistic analysis. The minor allele C in SNP rs10519717 was associated with COPD in Mongolian (Odds ration (OR)=1.401, 95% confidence interval (CI): 1.110-1.769, P=0.044); however, not in the Han. The CC genotype in SNP rs10519717 was a risk factor for COPD in Mongolian (OR=2.667, 95% CI: 1.479-4.809, P=0.044); however, the TC genotype in Han played the same role (OR=1.396, 95% CI: 1.018-1.915, P=0.044). The GG genotype in SNP rs13147758 was protective in the Han (OR=0.546, 95% CI: 0.332-0.897, P=0.017). The homozygote of the minor alleles in SNPs rs12504628, rs1828591, and rs13118928 had a protective role in the both of COPD populations. For the minor allele distribution, the differences between the Han and Mongolian were presented only in the case group for rs12504628 (P=0.003), rs13147758 (P=0.002), rs1828591 (P=0.001), and rs13118928 (P=0.002); for the genotypes, differences was presented at the frequency of the minor allele homozygote in rs13147758 (P=0.048), rs10519717 (P=0.027), rs1828591 (P=0.041), and rs13118928 (P=0.044) in Mongolian. Our findings suggested that HHIP rs10519717 might be associated with susceptibility of Mongolian COPD. For the other SNPs, the differences between the two populations were represented by minor allele distribution and frequency of the minor allele homozygotes.


Molecular characterization and expression patterns of the actinin-associated LIM protein (ALP) subfamily genes in porcine skeletal muscle.

  • Ke Xue‎ et al.
  • Gene‎
  • 2014‎

The actinin-associated LIM protein (ALP) subfamily has important functions in cell signal transduction, cell proliferation, and integration of cytoskeletal architecture. To detect their functions in pig skeletal muscle, we cloned and characterized the pig ALP subfamily genes, drew their genomic structure maps, and detected their tissue expression patterns. We identified a new spliced variant of PDLIM3 in pig skeletal muscle and named it as PDLIM3-4, which was only expressed in the heart and skeletal muscle. Our results showed that PDLIM3-4 was expressed in adult pig skeletal muscle with the highest expression level, and both PDLIM3-4 isoform and PDLIM4 had different expression profiles during the prenatal and postnatal stages of skeletal muscle development among the three pig breeds. These studies provide useful information for further research on the functions of pig ALP subfamily genes in skeletal muscle development.


Molecular characterization, tissue distribution and feeding related changes of NUCB2A/nesfatin-1 in Ya-fish (Schizothorax prenanti).

  • Fangjun Lin‎ et al.
  • Gene‎
  • 2014‎

The protein nucleobindin-2 (NUCB2) was identified over a decade ago and recently raised great interest as its derived peptide nesfatin-1 was shown to reduce food intake and body weight in rodents. However, the involvement of NUCB2 in feeding behavior has not well been studied in fish. In the present study, we characterized the structure, distribution, and meal responsive of NUCB2A/nesfatin-1 in Ya-fish (Schizothorax prenanti) for the first time. The full length cDNA of Ya-fish was 2140base pair (bp), which encoded a polypeptide of 487 amino acid residues including a 23 amino acid signal peptide. A high conservation in NUCB2 sequences was found in vertebrates, however the proposed propeptide cleavage site (Arg-Arg) conserved among other species is not present in Ya-fish NUCB2A sequence. Tissue distribution analysis revealed that Ya-fish NUCB2A mRNA was ubiquitously expressed in all test tissues, and abundant expression was detected in several regions including the hypothalamus, hepatopancreas, ovary and intestines. NUCB2A mRNA expression respond to feeding status change may vary and be tissue specific. NUCB2A mRNA levels significantly increased (P<0.05) in the hypothalamus and intestines after feeding and substantially decreased (P<0.01) during a week food deprivation in the hypothalamus. Meanwhile, NUCB2A mRNA in the hepatopancreas was significantly elevated (P<0.001) during food deprivation, and a similar increase was also found after short-time fasting. This points toward a potential hepatopancreas specific local role for NUCB2A in the regulation of metabolism during food deprivation. Collectively, these results provide the molecular and functional evidence to support potential anorectic and metabolic roles for NUCB2A in Ya-fish.


Detection of SNPs in the TBC1D1 gene and their association with carcass traits in chicken.

  • Yan Wang‎ et al.
  • Gene‎
  • 2014‎

TBC1D1 plays an important role in numerous fundamental physiological processes including muscle metabolism, regulation of whole body energy homeostasis and lipid metabolism. The objective of the present study was to identify single nucleotide polymorphisms (SNPs) in chicken TBC1D1 using 128 Erlang mountainous chickens and to determine if these SNPs are associated with carcass traits. The approach consisted of sequencing TBC1D1 using a panel of DNA from different individuals, revealing twenty-two SNPs. Among these SNPs, two polymorphisms (g.69307744C>T and g.69307608T>G) of block 1, four polymorphisms (g.69322320C>T, g.69322314G>A, g.69317290A>G and g.69317276T>C) of block 2 and four polymorphisms of block 3 (g.69349746G>A, g.69349736C>G, g.69349727C>T and g.69349694C>T) exhibited a high degree of linkage disequilibrium in all test populations. An association analysis was performed between the twenty-two SNPs and seven performance traits. SNPs g.69307744C>T, g.69340192G>A and g.69355665T>C were demonstrated to have a strong effect on liveweight (BW), carcass weight (CW), semi-eviscerated weight (SEW) and eviscerated weight (EW) and g.69340070C>T polymorphism was related to BW, SEW and BMW in chicken populations. However, for the other SNPs, there were no significant correlations between different genotypes and carcass traits. Meanwhile, haplotype CT-TG of block 1 and combined genotype AG-TT-AC-CT of block 3 were significantly associated with BW, CW, SEW and EW. Overall, our results provide evidence that polymorphisms in TBC1D1 are associated with carcass traits and would be a useful candidate gene in selection programs for improving carcass traits.


Triangular relationship between CYP2R1 gene polymorphism, serum 25(OH)D3 levels and T2DM in a Chinese rural population.

  • Yan Wang‎ et al.
  • Gene‎
  • 2018‎

A low serum vitamin D concentration is associated with an increased risk of type 2 diabetes mellitus (T2DM). Recently, several single nucleotid polymorphisms (SNPs) have been identified which influence vitamin D levels. If a causal relationship exists between vitamin D concentrations and T2DM, one would expect a similar association between the newly identified SNPs and T2DM risk. Therefore, this study investigated the association between four SNPs of cytochrome P450 family 2, subfamily R, peptide 1 (CYP2R1) gene, serum 25(OH)D3 levels and T2DM.


Characterization of a novel carbonic anhydrase from freshwater pearl mussel Hyriopsis cumingii and the expression profile of its transcript in response to environmental conditions.

  • Gang Ren‎ et al.
  • Gene‎
  • 2014‎

Gene encoding for α-carbonic anhydrases (α-CAs) and their functions in fundamental metabolism and biomineralization are widely identified in mollusks. However, the transcriptional regulation of α-CA genes in response to various environmental conditions remains unknown. In the present study, we characterized a cDNA encoding for an α-CA (HcCA) from the freshwater pearl mussel Hyriopsis cumingii. The spatial and temporal expression patterns of HcCA indicate that this gene is mainly expressed in the mantle of juvenile mussels. The expression profile of HcCA under various environmental conditions reveals that the transcription of HcCA is significantly regulated by Ca(2+) concentration, water temperature, pH and air exposure. Our results suggest that HcCA is a crucial target gene by which the external environmental conditions affecting shell growth and pH homeostasis of H. cumingii.


Identification and expression patterns of adipokine genes during adipocyte differentiation in the Tibetan goat (Capra hircus).

  • Xueying Li‎ et al.
  • Gene‎
  • 2018‎

Adipokines are secreted by adipose tissue and play an important role in the regulation of lipid metabolism. However, the information regarding adipokines in goats is limited. PPARγ is a key gene in adipocyte differentiation and activates adipokine genes. Rosiglitazone is a PPARγ agonist and can promote the expression of PPARγ to increase the expression of lipogenesis-related genes. Therefore, investigation of the relationship between rosiglitazone and adipokines will help us to better understand the function of PPARγ in lipid metabolism in Tibetan goats. In this study, we cloned the resistin (RETN), apelin (APLN), fibroblast growth factor 21 (FGF21), and visfatin (NAMPT) genes from non-pregnant female Tibetan goat adipose tissue. APLN and NAMPT were predominantly expressed in the kidney, and FGF21 was expressed at the highest levels in the liver in vivo. In fat tissues, the highest expression levels of FGF21 and RETN were detected in omental fat, whereas their expression in perirenal and subcutaneous fat was extremely weak. APLN and NAMPT were abundantly expressed in omental and subcutaneous fat in vivo. In addition, the four adipokines had different expression profiles during goat adipocyte differentiation in vitro. Oil red O staining showed that rosiglitazone could promote adipocyte differentiation and lipid droplet formation. In addition, rosiglitazone significantly increased the expression of FGF21 and RETN (p<0.05) but decreased the expression of APLN and NAMPT (p<0.05). These results suggest that the four adipocytokine genes may have different roles during goat adipocyte differentiation. And PPARγ could regulate the expression of the four adipokines, but the detailed regulatory mechanism still needs to be elucidated.


Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit development and ripening in red bayberry (Morella rubra).

  • Hai-Bo Zhao‎ et al.
  • Gene‎
  • 2019‎

The MADS-box gene family encodes transcription factors and plays an important role in plant growth and the development of flower and fruit. A perennial dioecious plant, the red bayberry genome has been published recently, providing the opportunity to analyze the MADS-box gene family and its role in fruit development and ripening. Here, we identified 54 MADS-box genes in the red bayberry genome, and classified them into two types based on phylogenetic analysis. Thirteen Type I MADS-box genes were subdivided into three subfamilies and 41 Type II MADS-box genes into 13 subfamilies. A total of 46 MADS-box genes were distributed across eight red bayberry chromosomes, and the other eight genes were located on the unmapped scaffolds. Transcriptome analysis suggested that the expression of most Type II genes was higher than Type I in five female tissues. Moreover, 26 MADS-box genes were expressed during red bayberry fruit development and ten of them showed high expression. qRT-PCR showed that the expression of MrMADS01 (SEP, MIKCC), with differences between the pale pink and red varieties, increased significantly at the final ripening stage, suggesting it may participate in ripening as positive regulator and related to anthocyanin biosynthesis. These results provide some clues for future study of MADS-box genes in red bayberry, especially in ripening process.


APOBEC2 mRNA and protein is predominantly expressed in skeletal and cardiac muscles of chickens.

  • Juan Li‎ et al.
  • Gene‎
  • 2014‎

Apolipoprotein B mRNA-editing enzyme catalytic subunit 2 (APOBEC2) plays an important role in regulating and maintaining muscle development in mammals. In this study, we evaluated APOBEC2 mRNA abundance and protein expression and the results indicated that APOBEC2 mRNA was most abundant in skeletal and cardiac muscle, with relatively low expression in the gonads, gizzard and subcutaneous fat tissues of chickens. Immunoreactive APOBEC2 was localized to the cell nucleus of developing myocardium and skeletal myofibers. There were significant differences in mRNA and protein abundance among ages, tissues, and between males and females. In conclusion, APOBEC2 was expressed as the greatest in skeletal muscle and cardiac muscle where it localized to the nucleus. Thus, APOBEC2 may play an important role in muscle development in chickens.


MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell carcinoma.

  • Wenjuan Liu‎ et al.
  • Gene‎
  • 2017‎

Increasing evidence has demonstrated that aberrant microRNAs (miRNAs) play important roles in the pathogenesis of most human malignancies. The purpose of this study was to explore the role of miR-30b-5p in human RCC. In the current study, we firstly found that the expression levels of miR-30b-5p were lower in both RCC tissues and cell lines. Then, we found that enforced miR-30b-5p expression and knockdown of GNA13 significantly suppressed the proliferation, invasion, migration and EMT of RCC cell lines. In addition, miR-30b-5p directly targeted GNA13 and repressed its expression. Furthermore, re-expression of GNA13 (without the 3'-UTR) could partially abrogate the miR-30b-5p-induced cell proliferation and metastasis inhibition. Taken together, these findings indicated that miR-30b-5p acts as a novel tumor suppressor to regulate RCC cell proliferation, metastasis and EMT through downregulation of GNA13 expression. Therefore, miR-30b-5p may be considered a potential biomarker for the diagnosis of RCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: