Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Chromosome-scale genomes reveal genomic consequences of inbreeding in the South China tiger: A comparative study with the Amur tiger.

  • Le Zhang‎ et al.
  • Molecular ecology resources‎
  • 2023‎

The South China tiger (Panthera tigris amoyensis, SCT) is the most critically endangered subspecies of tiger due to functional extinction in the wild. Inbreeding depression is observed among the captive population descended from six wild ancestors, resulting in high juvenile mortality and low reproduction. We assembled and characterized the first SCT genome and an improved Amur tiger (P. t. altaica, AT) genome named AmyTig1.0 and PanTig2.0. The two genomes are the most continuous and comprehensive among any tiger genomes yet reported at the chromosomal level. By using the two genomes and resequencing data of 15 SCT and 13 AT individuals, we investigated the genomic signature of inbreeding depression of the SCT. The results indicated that the effective population size of SCT experienced three phases of decline, ~5.0-1.0 thousand years ago, 100 years ago, and since captive breeding in 1963. We found 43 long runs of homozygosity fragments that were shared by all individuals in the SCT population and covered a total length of 20.63% in the SCT genome. We also detected a large proportion of identical-by-descent segments across the genome in the SCT population, especially on ChrB4. Deleterious nonsynonymous single nucleotide polymorphic sites and loss-of-function mutations were found across genomes with extensive potential influences, despite a proportion of these loads having been purged by inbreeding depression. Our research provides an invaluable resource for the formulation of genetic management policies for the South China tiger such as developing genome-based breeding and genetic rescue strategy.


Genome assembly and annotation of the king ratsnake, Elaphe carinata.

  • Jiale Fan‎ et al.
  • GigaByte (Hong Kong, China)‎
  • 2023‎

The king ratsnake (Elaphe carinata) of the genus Elaphe is a common large, non-venomous snake widely distributed in Southeast and East Asia. It is an economically important farmed species. As a non-venomous snake, the king ratsnake predates venomous snakes, such as cobras and pit vipers. However, the immune and digestive mechanisms of the king ratsnake remain unclear. Despite their economic and research importance, we lack genomic resources that would benefit toxicology, phylogeography, and immunogenetics studies. Here, we used single-tube long fragment read sequencing to generate the first contiguous genome of a king ratsnake from Huangshan City, Anhui province, China. The genome size is 1.56 GB with a scaffold N50 of 6.53M. The total length of the genome is approximately 621 Mb, while the repeat content is 42.26%. Additionally, we predicted 22,339 protein-coding genes, including 22,065 with functional annotations. Our genome is a potentially useful addition to those available for snakes.


The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

  • Haihua Bai‎ et al.
  • Genome biology and evolution‎
  • 2014‎

Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians.


Single-nucleus transcriptome inventory of giant panda reveals cellular basis for fitness optimization under low metabolism.

  • Shangchen Yang‎ et al.
  • BMC biology‎
  • 2023‎

Energy homeostasis is essential for the adaptation of animals to their environment and some wild animals keep low metabolism adaptive to their low-nutrient dietary supply. Giant panda is such a typical low-metabolic mammal exhibiting species specialization of extremely low daily energy expenditure. It has low levels of basal metabolic rate, thyroid hormone, and physical activities, whereas the cellular bases of its low metabolic adaptation remain rarely explored.


Haplotype-resolved chromosome-scale genomes of the Asian and African Savannah Elephants.

  • Minhui Shi‎ et al.
  • Scientific data‎
  • 2024‎

The Proboscidea, which includes modern elephants, were once the largest terrestrial animals among extant species. They suffered mass extinction during the Ice Age. As a unique branch on the evolutionary tree, the Proboscidea are of great significance for the study of living animals. In this study, we generate chromosome-scale and haplotype-resolved genome assemblies for two extant Proboscidea species (Asian Elephant, Elephas maximus and African Savannah Elephant, Loxodonta africana) using Pacbio, Hi-C, and DNBSEQ technologies. The assembled genome sizes of the Asian and African Savannah Elephant are 3.38 Gb and 3.31 Gb, with scaffold N50 values of 130 Mb and 122 Mb, respectively. Using Hi-C technology ~97% of the scaffolds are anchored to 29 pseudochromosomes. Additionally, we identify ~9 Mb Y-linked sequences for each species. The high-quality genome assemblies in this study provide a valuable resource for future research on ecology, evolution, biology and conservation of Proboscidea species.


An efficient pipeline for ancient DNA mapping and recovery of endogenous ancient DNA from whole-genome sequencing data.

  • Wenhao Xu‎ et al.
  • Ecology and evolution‎
  • 2021‎

Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next-generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole-genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.


Chromosome-Level Genome Assembly of the Green Peafowl (Pavo muticus).

  • Xinyuan Zhang‎ et al.
  • Genome biology and evolution‎
  • 2022‎

The green peafowl (Pavo muticus) is facing a high risk of extinction due to the long-term and widespread threats of poaching and habitat conversion. Here, we present a high-quality chromosome-level genome assembly of the green peafowl with high contiguity and accuracy assembled by PacBio sequencing, DNBSEQ short-read sequencing, and Hi-C sequencing technologies. The final genome size was estimated to be 1.049 Gb, whereas 1.042 Gb of the genome was assigned to 27 pseudochromosomes. The scaffold N50 length was 75.5 Mb with a complete BUSCO score of 97.6%. We identified W and Z chromosomes and validated them by resequencing 14 additional individuals. Totally, 167.04 Mb repetitive elements were identified in the genome, accounting for 15.92% of the total genome size. We predicted 14,935 protein-coding genes, among which 14,931 genes were functionally annotated. This is the most comprehensive and complete de novo assembly of the Pavo genus, and it will serve as a valuable resource for future green peafowl ecology, evolution, and conservation studies.


Screening of cell-virus, cell-cell, gene-gene crosstalk among animal kingdom at single cell resolution.

  • Dongsheng Chen‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission.


Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda.

  • Furong Gui‎ et al.
  • Protein & cell‎
  • 2022‎

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.


Chromosome-level Genome of the Muskrat (Ondatra zibethicus).

  • Haimeng Li‎ et al.
  • Genome biology and evolution‎
  • 2022‎

The muskrat (Ondatra zibethicus) is a semi-aquatic rodent species with ecological, economic, and medicinal importance. Here, we present an improved genome assembly, which is the first high-quality chromosome-level genome of the muskrat with high completeness and contiguity assembled using single-tube long fragment read, BGISEQ, and Hi-C sequencing technologies. The genome size of the final assembly was 2.63 Gb with 27 pseudochromosomes. The length of scaffold N50 reached 80.25 Mb with a Benchmarking Universal Single-Copy Ortholog score of 91.3%. We identified a 66.98 Mb X chromosome and a 1.14-Mb Y-linked genome region, and these sex-linked regions were validated by resequencing 32 extra male individuals. We predicted 19,396 protein-coding genes, among which 19,395 (99.99%) were functionally annotated. The expanded gene families in the muskrat genome were found to be enriched in several organic synthesis- and metabolism-related Gene Ontology terms, suggesting the likely genomic basis for the production and secretion of musk. This chromosome-level genome represents a valuable resource for improving our understanding of muskrat ecology and musk secretion.


The genome assembly and annotation of the many-banded krait, Bungarus multicinctus.

  • Boyang Liu‎ et al.
  • GigaByte (Hong Kong, China)‎
  • 2023‎

Snakes are a vital component of wildlife resources and are widely distributed across the globe. The many-banded krait Bungarus multicinctus is a highly venomous snake found across Southern Asia and central and southern China. Snakes are an ancient reptile group, and their genomes can provide important clues for understanding the evolutionary history of reptiles. Additionally, genomic resources play a crucial role in comprehending the evolution of all species. However, snake genomic resources are still scarce. Here, we present a highly contiguous genome of B. multicinctus with a size of 1.51 Gb. The genome contains a repeat content of 40.15%, with a total length exceeding 620 Mb. Additionally, we annotated a total of 24,869 functional genes. This research is of great significance for comprehending the evolution of B. multicinctus and provides genomic information on the genes involved in venom gland functions.


Association Analysis of Genetic Variants with Type 2 Diabetes in a Mongolian Population in China.

  • Haihua Bai‎ et al.
  • Journal of diabetes research‎
  • 2015‎

The large scale genome wide association studies (GWAS) have identified approximately 80 single nucleotide polymorphisms (SNPs) conferring susceptibility to type 2 diabetes (T2D). However, most of these loci have not been replicated in diverse populations and much genetic heterogeneity has been observed across ethnic groups. We tested 28 SNPs previously found to be associated with T2D by GWAS in a Mongolian sample of Northern China (497 diagnosed with T2D and 469 controls) for association with T2D and diabetes related quantitative traits. We replicated T2D association of 11 SNPs, namely, rs7578326 (IRS1), rs1531343 (HMGA2), rs8042680 (PRC1), rs7578597 (THADA), rs1333051 (CDKN2), rs6723108 (TMEM163), rs163182 and rs2237897 (KCNQ1), rs1387153 (MTNR1B), rs243021 (BCL11A), and rs10229583 (PAX4) in our sample. Further, we showed that risk allele of the strongest T2D associated SNP in our sample, rs757832 (IRS1), is associated with increased level of TG. We observed substantial difference of T2D risk allele frequency between the Mongolian sample and the 1000G Caucasian sample for a few SNPs, including rs6723108 (TMEM163) whose risk allele reaches near fixation in the Mongolian sample. Further study of genetic architecture of these variants in susceptibility of T2D is needed to understand the role of these variants in heterogeneous populations.


Deep whole-genome sequencing of 90 Han Chinese genomes.

  • Tianming Lan‎ et al.
  • GigaScience‎
  • 2017‎

Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects.


Chromosome-scale assembly and whole-genome sequencing of 266 giant panda roundworms provide insights into their evolution, adaptation and potential drug targets.

  • Lei Han‎ et al.
  • Molecular ecology resources‎
  • 2022‎

Helminth diseases have long been a threat to the health of humans and animals. Roundworms are important organisms for studying parasitic mechanisms, disease transmission and prevention. The study of parasites in the giant panda is of importance for understanding how roundworms adapt to the host. Here, we report a high-quality chromosome-scale genome of Baylisascaris schroederi with a genome size of 253.60 Mb and 19,262 predicted protein-coding genes. We found that gene families related to epidermal chitin synthesis and environmental information processes in the roundworm genome have expanded significantly. Furthermore, we demonstrated unique genes involved in essential amino acid metabolism in the B. schroederi genome, inferred to be essential for the adaptation to the giant panda-specific diet. In addition, under different deworming pressures, we found that four resistance-related genes (glc-1, nrf-6, bre-4 and ced-7) were under strong positive selection in a captive population. Finally, 23 known drug targets and 47 potential drug target proteins were identified. The genome provides a unique reference for inferring the early evolution of roundworms and their adaptation to the host. Population genetic analysis and drug sensitivity prediction provide insights revealing the impact of deworming history on population genetic structure of importance for disease prevention.


The genome assembly and annotation of the Oriental rat snake Ptyas mucosa.

  • Jiangang Wang‎ et al.
  • GigaByte (Hong Kong, China)‎
  • 2023‎

The Oriental rat snake Ptyas mucosa is a common non-venomous snake of the colubrid family, spanning most of South and Southeast Asia. P. mucosa is widely bred for its uses in traditional medicine, scientific research, and handicrafts. Therefore, genome resources of P. mucosa could play an important role in the efficacy of traditional medicine and the analysis of the living environment of this species. Here, we present a highly continuous P. mucosa genome with a size of 1.74 Gb. Its scaffold N50 length is 9.57 Mb, and the maximal scaffold length is 78.3 Mb. Its CG content is 37.9%, and its gene integrity reaches 86.6%. Assembled using long-reads, the total length of the repeat sequences in the genome reaches 735 Mb, and its repeat content is 42.19%. Finally, 24,869 functional genes were annotated in this genome. This study may assist in understanding P. mucosa and supporting medicinal research.


Genomic investigation of the Chinese alligator reveals wild-extinct genetic diversity and genomic consequences of their continuous decline.

  • Shangchen Yang‎ et al.
  • Molecular ecology resources‎
  • 2023‎

Critically endangered species are usually restricted to small and isolated populations. High inbreeding without gene flow among populations further aggravates their threatened condition and reduces the likelihood of their long-term survival. Chinese alligator (Alligator sinensis) is one of the most endangered crocodiles in the world and has experienced a continuous decline over the past c. 1 million years. In order to identify the genetic status of the remaining populations and aid conservation efforts, we assembled the first high-quality chromosome-level genome of Chinese alligator and explored the genomic characteristics of three extant breeding populations. Our analyses revealed the existence of at least three genetically distinct populations, comprising two breeding populations in China (Changxing and Xuancheng) and one breeding population in an American wildlife refuge. The American population does not belong to the last two populations of its native range (Xuancheng and Changxing), thus representing genetic diversity extinct in the wild and provides future opportunities for genetic rescue. Moreover, the effective population size of these three populations has been continuously declining over the past 20 ka. Consistent with this decline, the species shows extremely low genetic diversity, a large proportion of long runs of homozygous fragments, and mutational load across the genome. Finally, to provide genomic insights for future breeding management and conservation, we assessed the feasibility of mixing extant populations based on the likelihood of introducing new deleterious alleles and signatures of local adaptation. Overall, this study provides a valuable genomic resource and important genomic insights into the ecology, evolution, and conservation of critically endangered alligators.


Ancient Genomes Reveal the Evolutionary History and Origin of Cashmere-Producing Goats in China.

  • Yudong Cai‎ et al.
  • Molecular biology and evolution‎
  • 2020‎

Goats are one of the most widespread farmed animals across the world; however, their migration route to East Asia and local evolutionary history remain poorly understood. Here, we sequenced 27 ancient Chinese goat genomes dating from the Late Neolithic period to the Iron Age. We found close genetic affinities between ancient and modern Chinese goats, demonstrating their genetic continuity. We found that Chinese goats originated from the eastern regions around the Fertile Crescent, and we estimated that the ancestors of Chinese goats diverged from this population in the Chalcolithic period. Modern Chinese goats were divided into a northern and a southern group, coinciding with the most prominent climatic division in China, and two genes related to hair follicle development, FGF5 and EDA2R, were highly divergent between these populations. We identified a likely causal de novo deletion near FGF5 in northern Chinese goats that increased to high frequency over time, whereas EDA2R harbored standing variation dating to the Neolithic. Our findings add to our understanding of the genetic composition and local evolutionary process of Chinese goats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: