2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Association Analysis of Genetic Variants with Type 2 Diabetes in a Mongolian Population in China.

Journal of diabetes research | 2015

The large scale genome wide association studies (GWAS) have identified approximately 80 single nucleotide polymorphisms (SNPs) conferring susceptibility to type 2 diabetes (T2D). However, most of these loci have not been replicated in diverse populations and much genetic heterogeneity has been observed across ethnic groups. We tested 28 SNPs previously found to be associated with T2D by GWAS in a Mongolian sample of Northern China (497 diagnosed with T2D and 469 controls) for association with T2D and diabetes related quantitative traits. We replicated T2D association of 11 SNPs, namely, rs7578326 (IRS1), rs1531343 (HMGA2), rs8042680 (PRC1), rs7578597 (THADA), rs1333051 (CDKN2), rs6723108 (TMEM163), rs163182 and rs2237897 (KCNQ1), rs1387153 (MTNR1B), rs243021 (BCL11A), and rs10229583 (PAX4) in our sample. Further, we showed that risk allele of the strongest T2D associated SNP in our sample, rs757832 (IRS1), is associated with increased level of TG. We observed substantial difference of T2D risk allele frequency between the Mongolian sample and the 1000G Caucasian sample for a few SNPs, including rs6723108 (TMEM163) whose risk allele reaches near fixation in the Mongolian sample. Further study of genetic architecture of these variants in susceptibility of T2D is needed to understand the role of these variants in heterogeneous populations.

Pubmed ID: 26290879 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

BWA (tool)

RRID:SCR_010910

Software for aligning sequencing reads against large reference genome. Consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. First for sequence reads up to 100bp, and other two for longer sequences ranged from 70bp to 1Mbp.

View all literature mentions

GWAS: Catalog of Published Genome-Wide Association Studies (tool)

RRID:SCR_012745

Catalog of published genome-wide association studies. Genome-wide set of genetic variants in different individuals to see if any variant is associated with trait and disease. Database of genome-wide association study (GWAS) publications including only those attempting to assay single nucleotide polymorphisms (SNPs). Publications are organized from most to least recent date of publication. Studies are identified through weekly PubMed literature searches, daily NIH-distributed compilations of news and media reports, and occasional comparisons with an existing database of GWAS literature (HuGE Navigator). Works with HANCESTRO ancestry representation.

View all literature mentions