Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Contrasting Patterns of Rapid Molecular Evolution within the p53 Network across Mammal and Sauropsid Lineages.

  • Courtney N Passow‎ et al.
  • Genome biology and evolution‎
  • 2019‎

Cancer is a threat to multicellular organisms, yet the molecular evolution of pathways that prevent the accumulation of genetic damage has been largely unexplored. The p53 network regulates how cells respond to DNA-damaging stressors. We know little about p53 network molecular evolution as a whole. In this study, we performed comparative genetic analyses of the p53 network to quantify the number of genes within the network that are rapidly evolving and constrained, and the association between lifespan and the patterns of evolution. Based on our previous published data set, we used genomes and transcriptomes of 34 sauropsids and 32 mammals to analyze the molecular evolution of 45 genes within the p53 network. We found that genes in the network exhibited evidence of positive selection and divergent molecular evolution in mammals and sauropsids. Specifically, we found more evidence of positive selection in sauropsids than mammals, indicating that sauropsids have different targets of selection. In sauropsids, more genes upstream in the network exhibited positive selection, and this observation is driven by positive selection in squamates, which is consistent with previous work showing rapid divergence and adaptation of metabolic and stress pathways in this group. Finally, we identified a negative correlation between maximum lifespan and the number of genes with evidence of divergent molecular evolution, indicating that species with longer lifespans likely experienced less variation in selection across the network. In summary, our study offers evidence that comparative genomic approaches can provide insights into how molecular networks have evolved across diverse species.


The cavefish genome reveals candidate genes for eye loss.

  • Suzanne E McGaugh‎ et al.
  • Nature communications‎
  • 2014‎

Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.


Using multiple reference genomes to identify and resolve annotation inconsistencies.

  • Patrick J Monnahan‎ et al.
  • BMC genomics‎
  • 2020‎

Advances in sequencing technologies have led to the release of reference genomes and annotations for multiple individuals within more well-studied systems. While each of these new genome assemblies shares significant portions of synteny between each other, the annotated structure of gene models within these regions can differ. Of particular concern are split-gene misannotations, in which a single gene is incorrectly annotated as two distinct genes or two genes are incorrectly annotated as a single gene. These misannotations can have major impacts on functional prediction, estimates of expression, and many downstream analyses.


Genetic mapping of craniofacial traits in the Mexican tetra reveals loci associated with bite differences between cave and surface fish.

  • Amanda K Powers‎ et al.
  • BMC ecology and evolution‎
  • 2023‎

The Mexican tetra, Astyanax mexicanus, includes interfertile surface-dwelling and cave-dwelling morphs, enabling powerful studies aimed at uncovering genes involved in the evolution of cave-associated traits. Compared to surface fish, cavefish harbor several extreme traits within their skull, such as a protruding lower jaw, a wider gape, and an increase in tooth number. These features are highly variable between individual cavefish and even across different cavefish populations.


The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage.

  • H Bradley Shaffer‎ et al.
  • Genome biology‎
  • 2013‎

We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing.


Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

  • Audra L Andrew‎ et al.
  • BMC genomics‎
  • 2017‎

Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems.


The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish.

  • Masato Yoshizawa‎ et al.
  • BMC evolutionary biology‎
  • 2018‎

An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes).


Whole-genome variation of transposable element insertions in a maize diversity panel.

  • Yinjie Qiu‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2021‎

Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome-wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short-read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 nonredundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e., LTRs, Helitrons, and TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high-frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP-based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.


Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome.

  • Blair W Perry‎ et al.
  • Genome biology and evolution‎
  • 2018‎

Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.


CaveCrawler: an interactive analysis suite for cavefish bioinformatics.

  • Annabel Perry‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2022‎

The growing use of genomics in diverse organisms provides the basis for identifying genomic and transcriptional differences across species and experimental conditions. Databases containing genomic and functional data have played critical roles in the development of numerous genetic models but most emerging models lack such databases. The Mexican tetra, Astyanax mexicanus exists as 2 morphs: surface-dwelling and cave-dwelling. There exist at least 30 cave populations, providing a system to study convergent evolution. We have generated a web-based analysis suite that integrates datasets from different studies to identify how gene transcription and genetic markers of selection differ between populations and across experimental contexts. Results of diverse studies can be analyzed in conjunction with other genetic data (e.g. Gene Ontology information), to enable biological inference from cross-study patterns and identify future avenues of research. Furthermore, the framework that we have built for A. mexicanus can be adapted for other emerging model systems.


Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments.

  • Danielle H Drabeck‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family are phospholipases essential for the degradation of organelles in the lens of the eye. They translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny, and selection of plaat1 across bony fishes and tetrapods. We show that plaat1 (likely ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual acuity and blind mammals and fish. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light-environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.


An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish.

  • Cody Loomis‎ et al.
  • Frontiers in neuroanatomy‎
  • 2019‎

A shift in environmental conditions impacts the evolution of complex developmental and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model for examining the evolution of development, physiology, and behavior because multiple cavefish populations can be compared to an extant, ancestral-like surface population of the same species. Many behaviors have diverged in cave populations of A. mexicanus, and previous studies have shown that cavefish have a loss of sleep, reduced stress, an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly little is known about the changes in neuroanatomy that underlie these behavioral phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and three independent cavefish populations. Volumetric reconstruction of serial-sectioned brains confirms convergent evolution on reduced optic tectum volume in all cavefish populations tested. In addition, we quantified volumes of specific neuroanatomical loci within several brain regions that have previously been implicated in behavioral regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal an enlargement of the hypothalamus in all cavefish populations relative to surface fish, as well as subnuclei-specific differences within the thalamus and prethalamus. Taken together, these analyses support the notion that changes in environmental conditions are accompanied by neuroanatomical changes in brain structures associated with behavior. This atlas provides a resource for comparative neuroanatomy of additional brain regions and the opportunity to associate brain anatomy with evolved changes in behavior.


A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution.

  • Wesley C Warren‎ et al.
  • Nature communications‎
  • 2021‎

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Repeated evolution of circadian clock dysregulation in cavefish populations.

  • Katya L Mack‎ et al.
  • PLoS genetics‎
  • 2021‎

Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.


Tandem Duplicate Genes in Maize Are Abundant and Date to Two Distinct Periods of Time.

  • Thomas J Y Kono‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2018‎

Tandem duplicate genes are proximally duplicated and as such occur in similar genomic neighborhoods. Using the maize B73 and PH207 de novo genome assemblies, we identified thousands of tandem gene duplicates that account for ∼10% of the annotated genes. These tandem duplicates have a bimodal distribution of ages, which coincide with ancient allopolyploidization and more recent domestication. Tandem duplicates are smaller on average and have a higher probability of containing LTR elements than other genes, suggesting origins in nonhomologous recombination. Within relatively recent tandem duplicate genes, ∼26% appear to be undergoing degeneration or divergence in function from the ancestral copy. Our results show that tandem duplicates are abundant in maize, arose in bursts throughout maize evolutionary history under multiple potential mechanisms, and may provide a substrate for novel phenotypic variation.


Selection-driven trait loss in independently evolved cavefish populations.

  • Rachel L Moran‎ et al.
  • Nature communications‎
  • 2023‎

Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: