Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Quantitative Proteomic Analysis Reveals Antiviral and Anti-inflammatory Effects of Puerarin in Piglets Infected With Porcine Epidemic Diarrhea Virus.

  • Mengjun Wu‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Porcine epidemic diarrhea virus (PEDV) has caused enormous economic losses to the swine industry worldwide in recent years. Puerarin (PR), a major isoflavonoid isolated from the Chinese herb Gegen, possesses many pharmacological activities, including anti-inflammatory, and anti-viral activities. This study was conducted with both PEDV-infected African green monkey kidney cells (Vero) and neonatal pigs to determine the effect of PR on PEDV infection and to elucidate the underlying mechanisms by using proteomic analyses. Twenty-four piglets fed a milk replacer were randomly allocated into one of three groups (Control, PEDV, and PEDV + PR). After a 5-day period of adaption, piglets (n = 8/group) in the PEDV + PR were orally administered with PR (0.5 mg/kg body weight) between days 5 and 9, whereas piglets in the other two groups received the same volume of liquid milk replacer. On day 9, piglets were orally administered with either sterile saline or PEDV (Yunnan province strain) at 104.5 TCID50 (50% tissue culture infectious dose) per pig. On day 12 of the trial, jugular vein blood and intestinal samples were collected. In addition, Vero cells were assigned randomly into three groups (Control, PEDV, PEDV + PR). Cells in the PEDV and PEDV + PR groups were infected with PEDV at a multiplicity of infection of 0.01, while cells in the control group were treated with the same volume of sterile saline. One hour later, cells in the Control and PEDV groups were cultured in serum-free DMEM, while cells in the PEDV + PR group were supplemented with PR. After 36 h of culture, cells were harvested. PR attenuated the reductions in cell proliferation in vitro and growth performance in PEDV-infected piglets, and inhibited PEDV replication and the expression of several cytokines (including IL-8) both in vitro and in vivo. Proteomic analyses identified that the abundances of 29 proteins in the ileum were altered by PEDV infection and restored to the control level by PR. Pathway analyses revealed that PR restored the expression of several interferon-stimulated genes and selectively upregulated the expression of guanylate-binding proteins. Western blot analyses showed that PR supplementation inhibited the PEDV-induced NF-κB activation. Collectively, these results indicate that PR could exert antiviral and anti-inflammatory effects in piglets infected with PEDV and have the potential to be an effective antiviral feed additive.


Dietary Lactobacillus fermentum and Bacillus coagulans Supplementation Modulates Intestinal Immunity and Microbiota of Broiler Chickens Challenged by Clostridium perfringens.

  • Shuangshuang Guo‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

Preventative effects of Lactobacillus fermentum and Bacillus coagulans against Clostridium perfringens infection in broilers have been well-demonstrated. The present study was conducted to investigate the modulation of these two probiotics on intestinal immunity and microbiota of C. perfringens-challenged birds. The 336 one-day-old broilers were assigned to four groups with six replicates in each group. Birds in the control were unchallenged and fed a basal diet, and birds in the three challenged groups were dietary supplemented with nothing (Cp group), 1 × 109 CFU/kg of L. fermentum (Lf_Cp group), or 1 × 1010 CFU/kg of B. coagulans (Bc_Cp group). Challenge was performed from days 14 to 20, and samples were collected on days 21 and 28. Challenge upregulated interleukin (IL)-1β and transforming growth factor (TGF)-β4 mRNA expression in jejunum on day 21, which was downregulated by B. coagulans and L. fermentum, respectively (P < 0.05). Both probiotic groups upregulated jejunal IL-1β, interferon (IFN)-γ, IL-17, and TGF-β4 on day 28 as well as IFN-γ on day 21 (P < 0.05). The Bc_Cp group increased CD3+ T cell counts in the jejunal crypt on day 21 (P < 0.05). Challenge decreased the ileal ACE index on day 21 and cecal microbial richness on day 28, which were increased by probiotic treatments, and ileal bacterial richness decreased in the Bc_Cp group on day 28 (P < 0.05). Only ileal microbiota on day 21 was distinctly affected with an R-value at 0.3116 by ANOSIM analysis (P < 0.05). Compared with the control, ileal Firmicutes increased on day 21, and ileal Bacteroidetes and cecal Proteobacteria decreased on day 28 in challenged groups (P < 0.05). Challenge increased Romboutsia spp. in the ileum as well as unclassified f_Lachnospiraceae and Ruminococcus_torques group in the cecum, and decreased Lactobacillus spp. in the ileum on day 21, which were all conversely modulated by L. fermentum (P < 0.05). Challenge increased amino acid metabolism of ileal microbiota and membrane transport of cecal microbiota, and decreased amino acid metabolism of cecal microbiota on day 21, which were conversely regulated by both probiotics (P < 0.05). In conclusion, L. fermentum and B. coagulans attenuated the intestinal inflammation and microbial dysbiosis soon after C. perfringens challenge.


TNFα-Erk1/2 signaling pathway-regulated SerpinE1 and SerpinB2 are involved in lipopolysaccharide-induced porcine granulosa cell proliferation.

  • Xiaolu Qu‎ et al.
  • Cellular signalling‎
  • 2020‎

Lipopolysaccharide (LPS) is an inhibitory factor that causes hormonal imbalance and subsequently affects ovarian function and fertility in mammals. Previous studies have shown that the exposure of granulosa cells (GC) to LPS leads to steroidogenesis dysfunction. However, the effects of LPS on the viability of GC remain largely unclear. In the present study, we aimed to address this question and unveil the underlying molecular mechanisms using cultured porcine GC. Results showed that GC proliferation and tumor necrosis factor α (TNFα) secretion were significantly increased after exposure to LPS, and these effects were completely reversed by blocking the TNFα sheddase, ADAM17. Moreover, GC proliferation induced by LPS was mimicked by treatment with recombinant TNFα. In addition, SerpinE1 and SerpinB2 expression levels increased in GC after treatment with LPS or recombinant TNFα, whereas blocking the Erk1/2 pathway completely abolished these effects and also inhibited GC proliferation. Further, consistent with the effects of blocking the Erk1/2 pathway, cell proliferation was completely inhibited by knocking down SerpinE1 or SerpinB2 in the presence of LPS or recombinant TNFα. Mitochondrial membrane potential (MMP) polarization in GC was increased by LPS or recombinant TNFα treatment, and these changes were completely negated by Erk1/2 inhibition, but not by SerpinE1 or SerpinB2 knockdown. Taken together, these results suggested that the TNFα-mediated upregulation of SerpinE1 and SerpinB2, through activation of the Erk1/2 pathway plays a crucial role in LPS-stimulated GC proliferation, and the increase in GC MMP may synergistically influence this process.


Tumour-associated macrophages heterogeneity drives resistance to clinical therapy.

  • Shuangshuang Guo‎ et al.
  • Expert reviews in molecular medicine‎
  • 2022‎

Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.


The protein 4.1R downregulates VEGFA in M2 macrophages to inhibit colon cancer metastasis.

  • Yu Lu‎ et al.
  • Experimental cell research‎
  • 2021‎

M2 macrophages are crucial components of the tumour microenvironment and have been shown to be closely related to tumour progression. Co-culture with 4.1R-/- M2 macrophages enhances the malignancy of colon cancer (CC), but the mechanism remains unclear. Here, we report that protein 4.1R knockout reduced the phagocytosis of M2 macrophages (M-CSF/IL-4-treated bone marrow cells) and promoted MC38 colon cancer cell proliferation, migration, invasion, tumour formation and epithelial-mesenchymal transition (EMT), which are regulated by M2 macrophages. Further mechanistic dissection revealed that the 4.1R knockout upregulated vascular endothelial growth factor A (VEGFA) secreted by M2 macrophages and promoted colon cancer progression by activating the PI3K/AKT signalling pathway. In summary, our present study identified that 4.1R downregulates VEGFA secretion in M2 macrophages and delays the malignant potential of colon cancer by inhibiting the PI3K/AKT signalling pathway.


ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis.

  • Mengneng Xiong‎ et al.
  • The Journal of cell biology‎
  • 2023‎

Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.


The m6A methyltransferase WTAP plays a key role in the development of diffuse large B-cell lymphoma via regulating the m6A modification of catenin beta 1.

  • Shuangshuang Guo‎ et al.
  • Annals of translational medicine‎
  • 2022‎

Diffuse large B-cell lymphoma (DLBCL) is the most frequently occurring subtype of lymphoma. Unfortunately, the fundamental processes underlying the pathogenesis of DLBCL remain little understood. N6-methyladenosine (m6A) methylation has been shown to be the most common internal alteration of mRNAs found in eukaryotes, and it is thought to play a key role in cancer pathogenesis. However, the precise relationship between m6A mRNA methylation and DLBCL pathogenesis remains to be fully elucidated.


Partial Substitution of Fermented Soybean Meal for Soybean Meal Influences the Carcass Traits and Meat Quality of Broiler Chickens.

  • Shuangshuang Guo‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2020‎

The usage of fermented soybean meal (FSBM) in poultry feed is limited due to the high cost. The present study was conducted to examine the carcass traits and meat quality of broiler chickens that were fed diets with partial replacement of soybean meal (SBM) with FSBM. The 336 one-day-old chicks were assigned to four groups with 0% (control), 2.5%, 5.0%, and 7.5% FSBM addition in corn-SBM-based diets. Compared with the control, 2.5% and 5.0% FSBM decreased leg muscle yield, breast drip loss, and cooking loss (p < 0.05). The 7.5% FSBM increased the ultimate pH of breast and thigh muscles, and all FSBM treatments decreased muscle lightness and breast malondialdehyde content (p < 0.05). The 2.5% FSBM increased breast total superoxide dismutase activity, while 7.5% FSBM reduced breast hydrogen peroxide level (p < 0.05). All FSBM treatments elevated breast contents of bitter and sour tasting amino acids, and 2.5% and 7.5% FSBM increased breast glutamic acid and total free amino acids (p < 0.05). The 5.0% and 7.5% FSBM elevated thigh isoleucine and leucine contents (p < 0.05). In conclusion, FSBM replacing SBM affected meat quality with the decrease of lightness and increase of pH, water-holding capacity, antioxidant properties, and free amino acids.


Mechanosensitive channel MscL induces non-apoptotic cell death and its suppression of tumor growth by ultrasound.

  • Xiaoxu Wen‎ et al.
  • Frontiers in chemistry‎
  • 2023‎

Mechanosensitive channel of large conductance (MscL) is the most thoroughly studied mechanosensitive channel in prokaryotes. Owing to its small molecular weight, clear mechanical gating mechanism, and nanopore forming ability upon opening, accumulating studies are implemented in regulating cell function by activating mechanosensitive channel of large conductance in mammalian cells. This study aimed to investigate the potentials of mechanosensitive channel of large conductance as a nanomedicine and a mechano-inducer in non-small cell lung cancer (NSCLC) A549 cells from the view of molecular pathways and acoustics. The stable cytoplasmic vacuolization model about NSCLC A549 cells was established via the targeted expression of modified mechanosensitive channel of large conductance channels in different subcellular organelles. Subsequent morphological changes in cellular component and expression levels of cell death markers are analyzed by confocal imaging and western blots. The permeability of mitochondrial inner membrane (MIM) exhibited a vital role in cytoplasmic vacuolization formation. Furthermore, mechanosensitive channel of large conductance channel can be activated by low intensity focused ultrasound (LIFU) in A549 cells, and the suppression of A549 tumors in vivo was achieved by LIFU with sound pressure as low as 0.053 MPa. These findings provide insights into the mechanisms underlying non-apoptotic cell death, and validate the nanochannel-based non-invasive ultrasonic strategy for cancer therapy.


Effects of Vitamin A on Immune Responses and Vitamin A Metabolism in Broiler Chickens Challenged with Necrotic Enteritis.

  • Shuangshuang Guo‎ et al.
  • Life (Basel, Switzerland)‎
  • 2023‎

Necrotic enteritis (NE) is an important enteric inflammatory disease of poultry, and the effects of vitamin A (VitA) on NE birds are largely unknown. The present study was conducted to investigate the effects of VitA on the immune responses and VitA metabolism of NE broilers as well as the underlying mechanisms. Using a 2 × 2 factorial arrangement, 336 1-day-old Ross 308 broiler chicks were randomly assigned to 4 groups with 7 replicates. Broilers in the control (Ctrl) group were fed a basal diet without extra VitA supplementation. Broilers in the VitA group were fed a basal diet supplemented with 12,000 IU/kg of VitA. Birds in NE and VitA + NE groups were fed corresponding diets and, in addition, co-infected with Eimeria spp. and Clostridium perfringens on days 14 to 20. Samples of the blood, jejunum, spleen and liver were obtained on day 28 for analysis, and meanwhile, lesion scores were also recorded. The results showed that NE challenge increased lesion score in the jejunum and decreased serum glucose, total glyceride, calcium, phosphorus and uric acid levels (p < 0.05). VitA supplementation reduced the levels of serum phosphorus, uric acid and alkaline phosphatase in NE-challenged birds and increased serum low-density lipoprotein content and the activity of aspartate aminotransferase and creatine kinase (p < 0.05). Compared with the Ctrl group, the VitA and NE groups had higher mRNA expression of interferon-γ in the jejunum (p < 0.05). NE challenge up-regulated mRNA expression of interleukin (IL)-13, transforming growth factor-β4, aldehyde dehydrogenase (RALDH)-2 and RALDH-3 in the jejunum, while VitA supplementation increased jejunal IL-13 mRNA expression and hepatic VitA content, but down-regulated splenic IL-13 mRNA expression (p < 0.05). The VitA + NE group had higher serum prostaglandin E2 levels and the Ctrl group had higher splenic RALDH-3 mRNA expression than that of the other three groups (p < 0.05). NE challenge up-regulated jejunal retinoic acid receptor (RAR)-β and retinoid X receptor (RXR)-α as well as splenic RAR-α and RAR-β mRNA expression (p < 0.05). VitA supplementation up-regulated jejunal RAR-β expression but down-regulated mRNA expression of RXR-α, RXR-γ, signal transducers and activators of transcription (STAT) 5 and STAT6 in the spleen (p < 0.05). Moreover, compared with the Ctrl group, the VitA and NE groups had down-regulated mRNA expression of jejunal and splenic Janus kinase (JAK) 1 (p < 0.05). In conclusion, NE challenge induced jejunal injury and expression of Th2 and Treg cell-related cytokines and enhanced RALDH and RAR/RXR mRNA expression, mainly in the jejunum of broilers. VitA supplementation did not alleviate jejunal injury or Th2 cell-related cytokine expression; however, it improved hepatic VitA deposition and inhibited the expression of RALDH-3, RXR and the JAK/STAT signaling pathway in the spleen of broilers. In short, the present study suggested the modulatory effects of vitamin A on the immune responses and vitamin A metabolism in broiler chickens challenged with necrotic enteritis.


Secreted Metabolites of Bifidobacterium infantis and Lactobacillus acidophilus Protect Immature Human Enterocytes from IL-1β-Induced Inflammation: A Transcription Profiling Analysis.

  • Shuangshuang Guo‎ et al.
  • PloS one‎
  • 2015‎

Combination regimens of Bifidobacterium infantis and Lactobacillus acidophilus have been demonstrated to prevent necrotizing enterocolitis (NEC) in clinical trials. However, the molecular mechanisms responsible for this protective effect are not well understood. Additionally, conditioned media from individual cultures of these two probiotics show strain specific modulation of inflammation using in vitro human intestinal NEC models. Here we report a transcription profiling analysis of gene expression in immature human fetal intestinal epithelial cells (H4 cells) pretreated with conditioned media from B. infantis (BCM) or L. acidophilus (LCM) prior to IL-1β stimulation. Compared with control media, the two probiotic-conditioned media (PCM) treatments altered the expression of hundreds of genes involved in the immune response, apoptosis and cell survival, cell adhesion, the cell cycle, development and angiogenesis. In IL-1β-stimulated cells, PCM treatment decreased the upregulation of genes in the NF-κB activation pathway and downregulated genes associated with extracellular matrix (ECM) remodeling. Compared with LCM, BCM showed more significant modulatory effects on ECM remodeling, reflected by a lower p value. IL-6 and IL-8 production was significantly reduced in IL-1β-stimulated cells pretreated with PCM (p<0.05), which was consistent with their altered gene expression. Western blot analysis showed that compared with IL-1β stimulation alone, PCM treatment attenuated the decrease of cytoplasmic IκBα and NF-κB p65 levels as well as the increase of nuclear NF-κB p65 levels in the stimulated cells (p<0.05). In conclusion, PCM treatment exerted anti-inflammatory effects in immature human fetal enterocytes primarily by modulating genes in the NF-κB signaling and ECM remodeling pathways. Additionally, some components of these signaling pathways, particularly the ECM remodeling pathway, were more profoundly affected by BCM than LCM.


Influence of Roasting Condition on Flavor Profile of Sunflower Seeds: A flavoromics approach.

  • Shuangshuang Guo‎ et al.
  • Scientific reports‎
  • 2019‎

Sunflower see/ds (Helianthus annuus L.) were roasted in an electric forced air oven for 15, 30, 45, and 60 min at 125, 135 and 145 °C. The effect of temperature and time on the flavor profile of the samples were evaluated by headspace solid-phase microextraction coupled with gas chromatography-mass spectroscopy (HS-SPME-GC-MS). Unsupervised Principle Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC) multivariate statistical methods were used to visualize, group and classify the samples. 114 volatiles were identified in the roasted sunflower seeds (RSF), with terpenes (α-pinene, β-pinene), heterocyclic compounds (2-ethyl-3-methylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, pyridine), aldehydes (2-methylbutanal, furfural, hexanal, phenylacetaldehyde), hydrocarbons (octane, 2-isobutyl-1,4-dimethylcyclohexane, 6,6-dimethylundecane), alcohol (3-methyl-2-propyl-1-pentanol), and γ-butyrolactone being dominant compounds. The content of most volatile compounds increased with increase in roasting temperature and time, such as esters, terpenes, pyrazines, aldehydes, ketones, and alcohols. 2,3-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-3-methylpyrazine, and 2-ethyl-3,5-dimethylpyrazine contributed to be the major role in roast and nutty flavor of the roasted sunflower seeds. Roasting at 125 °C for 45 min was found to be the better condition for roasted sunflower seeds, which gave the lowest off-flavor and burnt tastes.


Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers.

  • Chengcheng Li‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2020‎

Cold stress induces oxidative damage and impairs energy status of broilers. N-acetylcysteine (NAC) exhibits antioxidant properties and modulates energy metabolism of animals. This study was conducted to investigate the effects of NAC on energy status and antioxidant capacity of heart and liver in the cold-stressed broilers.


Combination of Decitabine and a Modified Regimen of Cisplatin, Cytarabine and Dexamethasone: A Potential Salvage Regimen for Relapsed or Refractory Diffuse Large B-Cell Lymphoma After Second-Line Treatment Failure.

  • Junxia Hu‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The prognosis for patients with relapsed or refractory diffuse large B-cell lymphoma (R/R-DLBCL) after second-line treatment failure is extremely poor. This study prospectively observed the efficacy and safety of decitabine with a modified cisplatin, cytarabine, and dexamethasone (DHAP) regimen in R/R-DLBCL patients who failed second-line treatment.


Polypyrrole-Coated Magnetite Vortex Nanoring for Hyperthermia-Boosted Photothermal/Magnetothermal Tumor Ablation Under Photoacoustic/Magnetic Resonance Guidance.

  • Jianfeng Bao‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

Photothermal/magnetothermal-based hyperthermia cancer therapy techniques have been widely investigated, and associated nanotechnology-assisted treatments have shown promising clinical potentials. However, each method has some limitations, which have impeded extensive applications. For example, the penetration ability of the photothermal is not satisfactory, while the heating efficiency of the magnetothermal is very poor. In this study, a novel magnetite vortex nanoring nanoparticle-coated with polypyrrole (denoted as nanoring Fe3O4@PPy-PEG) was first synthesized and well-characterized. By combining photothermal and magnetothermal effects, the performance of the dual-enhanced hyperthermia was significantly improved, and was thoroughly examined in this study. Benefiting from the magnetite vortex nanoring and polypyrrole, Fe3O4@PPy-PEG showed excellent hyperthermia effects (SAR = 1,648 Wg-1) when simultaneously exposed to the alternating magnetic field (300 kHz, 45 A) and near-infrared (808 nm, 1 W cm-2) laser. What is more, nanoring Fe3O4@PPy-PEG showed a much faster heating rate, which can further augment the antitumor effect by incurring vascular disorder. Besides, Fe3O4@PPy-PEG exhibited a high transverse relaxation rate [60.61 mM-1 S-1 (Fe)] at a very low B0 field (0.35 T) and good photoacoustic effect. We believe that the results obtained herein can significantly promote the development of multifunctional nanoparticle-mediated magnetic and photo induced efficient hyperthermia therapy.


Effects of germinating temperature and time on metabolite profiles of sunflower (Helianthus annuus L.) seed.

  • Shuangshuang Guo‎ et al.
  • Food science & nutrition‎
  • 2021‎

Sprouts with higher levels of nutrients and lower content of antinutritional substances have been gained a growing interest in the influence on the human's health. The study of the influence of germination temperature and time on the metabolite profiles of sunflower seed was studied by a metabolomics approach based on gas chromatography-flame ionization detection (GC-FID). Samples were extracted and fractionated covering a wide range of lipophilic and hydrophilic spectra. A total of 90 metabolites were identified by comparison with reference standards. Principal component analysis (PCA) revealed distinct dynamic changes in metabolites with the germinating time. Heatmap and agglomerative hierarchical clustering analysis revealed the differences and similarities among the samples. The germinating sunflower seeds clustered into three major groups. For instance, group I with a high content of sterols, monosaccharide, and amino acids, indicating the germination process, resulted in an increase in amino acids and monosaccharide. Group II had a high content of FAME and FFA. Relative targeted quantification of metabolites visually depicted by heatmap showed decreases in fatty acid methyl ester (FAME) and free fatty acid (FFA), and increases in amino acids, α-tocopherol, sterols, and γ-aminobutyric acid (GABA) during germination. Sunflower seeds germinated at 25°C were better for the accumulation of α-tocopherol, stigmasterol, leucine, proline, methionine, glutamine, and GABA compared with those at 35°C. These results help to better understand how germination conditions change the nutritional quality of germinated sunflower seeds from a metabolite profile view, allowing for the rational screening and usage of germinated sunflower seeds in the food industry.


Protein 4.1R affects photodynamic therapy for B16 melanoma by regulating the transport of 5-aminolevulinic acid.

  • Bowen Li‎ et al.
  • Experimental cell research‎
  • 2021‎

Melanoma is the most aggressive malignant tumor of skin cancer as it can grow rapidly and metastasize. Photodynamic therapy (PDT) is a promising cancer ablation method for skin tumors, although it lacks efficiency owing to factors such as tumor characteristics, delivery of photosensitizers, immune response in vivo etc. Extensive investigation of molecules that can potentially modulate treatment efficacy is required. Protein 4.1R is a cytoskeletal protein molecule. Previous studies have shown that protein 4.1R knockdown reduces PDT sensitivity in mouse embryonic fibroblast cells. However, the functional role of protein 4.1R in melanoma is unclear. In this study, we aimed to elucidate the effect of protein 4.1R on PDT for melanoma in mice and the mechanism of anti-tumor immunity. Our results indicated that CRISPR/Cas9-mediated protein 4.1R knockout promotes the proliferation, migration, and invasion of B16 cells. We further investigated the potential mechanism of protein 4.1R on tumor cell PDT sensitivity. Our results showed that protein 4.1R knockout reduced the expression of membrane transporters γ-aminobutyric acid transporter (GAT)-1 and (GAT)-2 in B16 cells, which affected 5-ALA transmembrane transport and reduced the efficiency of PDT on B16 cells. Protein 4.1R knockout downregulated the anti-tumor immune response triggered by PDT in vivo. In conclusion, our data suggest that protein 4.1R is an important regulator in PDT for tumors and may promote the progress and efficacy of melanoma treatment.


WDFY1, a WD40 repeat protein, is not essential for spermatogenesis and male fertility in mice.

  • Chunyu Lv‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

The mouse WD repeat and FYVE domain containing 1 (Wdfy1) gene is located in chromosome 1qC4 and spans over 73.7 kilobases. It encodes a protein of 410-amino acid protein that shares 97.8% amino acid sequence identity with the human WDFY1 protein. However, the expression pattern of WDFY1 in reproductive organs and its function in male fertility remain unknown. In this study, we generated transgenic mice expressing FLAG-Wdfy1-mCherry cDNA driven by the Wdfy1 promoter to clarify the expression of WDFY1. The results showed that WDFY1 is highly expressed in mouse testes and located in the cytoplasm of late pachytene spermatocytes to elongated spermatids. Interestingly, the global Wdfy1 knockout (KO) male mice displayed normal growth, development, and fertility. Further histological analysis of Wdfy1 knockout mouse testes revealed that all spermatogenic cells are present in Wdfy1 KO seminiferous tubules. Together, our data demonstrate that WDFY1 is dispensable for mouse spermatogenesis and male fertility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: