Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

TNFα-Erk1/2 signaling pathway-regulated SerpinE1 and SerpinB2 are involved in lipopolysaccharide-induced porcine granulosa cell proliferation.

Cellular signalling | 2020

Lipopolysaccharide (LPS) is an inhibitory factor that causes hormonal imbalance and subsequently affects ovarian function and fertility in mammals. Previous studies have shown that the exposure of granulosa cells (GC) to LPS leads to steroidogenesis dysfunction. However, the effects of LPS on the viability of GC remain largely unclear. In the present study, we aimed to address this question and unveil the underlying molecular mechanisms using cultured porcine GC. Results showed that GC proliferation and tumor necrosis factor α (TNFα) secretion were significantly increased after exposure to LPS, and these effects were completely reversed by blocking the TNFα sheddase, ADAM17. Moreover, GC proliferation induced by LPS was mimicked by treatment with recombinant TNFα. In addition, SerpinE1 and SerpinB2 expression levels increased in GC after treatment with LPS or recombinant TNFα, whereas blocking the Erk1/2 pathway completely abolished these effects and also inhibited GC proliferation. Further, consistent with the effects of blocking the Erk1/2 pathway, cell proliferation was completely inhibited by knocking down SerpinE1 or SerpinB2 in the presence of LPS or recombinant TNFα. Mitochondrial membrane potential (MMP) polarization in GC was increased by LPS or recombinant TNFα treatment, and these changes were completely negated by Erk1/2 inhibition, but not by SerpinE1 or SerpinB2 knockdown. Taken together, these results suggested that the TNFα-mediated upregulation of SerpinE1 and SerpinB2, through activation of the Erk1/2 pathway plays a crucial role in LPS-stimulated GC proliferation, and the increase in GC MMP may synergistically influence this process.

Pubmed ID: 32619562 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ImageQuant (tool)

RRID:SCR_014246

Software for automatic general image analysis. It provides fully automatic analysis of 1-D gels including lane creation, background subtraction, band detection, molecular weight calibration, quantity calibration, and normalization. Editing tools are provided for cropping, rotating, and filtering images.

View all literature mentions

p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb (antibody)

RRID:AB_390779

This monoclonal targets p44/42 MAPK (Erk1/2)

View all literature mentions

PAI-1 (D9C4) Rabbit mAb (antibody)

RRID:AB_2797763

This monoclonal targets SERPINE1

View all literature mentions

SerpinB2 antibody (antibody)

RRID:AB_882076

This polyclonal targets SerpinB2 antibody

View all literature mentions

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (antibody)

RRID:AB_2315112

This monoclonal targets Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)

View all literature mentions

β-Actin (13E5) Rabbit mAb (antibody)

RRID:AB_2223172

This monoclonal targets beta-Actin

View all literature mentions