Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 207 papers

Molecular and Functional Characterization of a Polygalacturonase-Inhibiting Protein from Cynanchum komarovii That Confers Fungal Resistance in Arabidopsis.

  • Nana Liu‎ et al.
  • PloS one‎
  • 2016‎

Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7-66.4% and 56.5-60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens.


Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis.

  • Yi Ma‎ et al.
  • Oncotarget‎
  • 2016‎

Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its' diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression.


De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii.

  • Xiaowen Ma‎ et al.
  • BMC genomics‎
  • 2015‎

Cynanchum komarovii Al Iljinski is a xerophytic plant species widely distributing in the severely adverse environment of the deserts in northwest China. At present, the detailed transcriptomic and genomic data for C. komarovii are still insufficient in public databases.


Identification of natural compound carnosol as a novel TRPA1 receptor agonist.

  • Chenxi Zhai‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

The transient receptor potential ankyrin 1 (TRPA1) cation channel is one of the well-known targets for pain therapy. Herbal medicine is a rich source for new drugs and potentially useful therapeutic agents. To discover novel natural TRPA1 agonists, compounds isolated from Chinese herbs were screened using a cell-based calcium mobilization assay. Out of the 158 natural compounds derived from traditional Chinese herbal medicines, carnosol was identified as a novel agonist of TRPA1 with an EC50 value of 12.46 µM. And the agonistic effect of carnosol on TRPA1 could be blocked by A-967079, a selective TRPA1 antagonist. Furthermore, the specificity of carnosol was verified as it showed no significant effects on two other typical targets of TRP family member: TRPM8 and TRPV3. Carnosol exhibited anti-inflammatory and anti-nociceptive properties; the activation of TRPA1 might be responsible for the modulation of inflammatory nociceptive transmission. Collectively, our findings indicate that carnosol is a new anti-nociceptive agent targeting TRPA1 that can be used to explore further biological role in pain therapy.


Carnosol as a Nrf2 Activator Improves Endothelial Barrier Function Through Antioxidative Mechanisms.

  • Xi Li‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Oxidative stress is the main pathogenesis of diabetic microangiopathy, which can cause microvascular endothelial cell damage and destroy vascular barrier. In this study, it is found that carnosol protects human microvascular endothelial cells (HMVEC) through antioxidative mechanisms. First, we measured the antioxidant activity of carnosol. We showed that carnosol pretreatment suppressed tert-butyl hydroperoxide (t-BHP)-induced cell viability, affected the production of lactate dehydrogenase (LDH) as well as reactive oxygen species (ROS), and increased the produce of nitric oxide (NO). Additionally, carnosol promotes the protein expression of vascular endothelial cadherin (VE-cadherin) to keep the integrity of intercellular junctions, which indicated that it protected microvascular barrier in oxidative stress. Meanwhile, we investigated that carnosol can interrupt Nrf2-Keap1 protein-protein interaction and stimulated antioxidant-responsive element (ARE)-driven luciferase activity in vitro. Mechanistically, we showed that carnosol promotes the expression of heme oxygenase 1(HO-1) and nuclear factor-erythroid 2 related factor 2(Nrf2). It can also promote the expression of endothelial nitric oxide synthase (eNOS). Collectively, our data support the notion that carnosol is a protective agent in HMVECs and has the potential for therapeutic use in the treatments of microvascular endothelial cell injury.


Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides.

  • Benwei Zhu‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

The alginate oligosaccharides have been widely used in agriculture, medicine, and food industries due to their versatile physiological functions such as antioxidant, anticoagulant, and antineoplastic activities. The bifunctional alginate lyases can degrade the alginate polysaccharide more efficiently into alginate oligosaccharides. Therefore, it is crucial to discover new bifunctional alginate lyase for alginate oligosaccharide production.


Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

  • Shengxian Li‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2017‎

Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction.


Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton.

  • Nana Liu‎ et al.
  • Scientific reports‎
  • 2017‎

Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion.


Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease.

  • Li Niu‎ et al.
  • Cell & bioscience‎
  • 2018‎

Iron accumulation in basal ganglia accompanies neuronal loss in Huntington's disease (HD) patients and mouse disease models. Disruption of HD brain iron homeostasis occurs before the onset of clinical signs. Therefore, investigating the mechanism of iron accumulation is essential to understanding its role in disease pathogenesis.


Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014.

  • Rui Zhu‎ et al.
  • PloS one‎
  • 2018‎

The genotypes of the H9N2 avian influenza viruses have changed since 2013 when almost all H9N2 viruses circulating in chickens in China were genotype 57 (G57) with the fittest lineage of each gene. To characterize the H9N2 variant viruses from 2011 to 2014, 28 H9N2 influenza viruses were isolated from live poultry markets in China from 2011-2014 and were analyzed by genetic and biological characterization. Our findings showed that 16 residues that changed antigenicity, two potential N-linked glycosylation sites, and one amino acid in the receptor binding site of the HA protein changed significantly from 2011-2014. Moreover, the HA and NA genes in the phylogenetic tree were mainly clustered into two independent branches, A and B, based on the year of isolation. H9N2 virus internal genes were related to those from the human-infected avian influenza viruses H5N1, H7N9, and H10N8. In particular, the NS gene in the phylogenetic tree revealed genetic divergence of the virus gene into three branches labeled A, B, and C, which were related to the H9N2, H10N8, and H7N9 viruses, respectively. Additionally, the isolates also showed varying levels of infection and airborne transmission. These results indicated that the H9N2 virus had undergone an adaptive evolution and variation from 2011-2014.


Hyperbaric oxygen preconditioning induces tolerance against oxidative injury and oxygen-glucose deprivation by up-regulating heat shock protein 32 in rat spinal neurons.

  • Guoyang Huang‎ et al.
  • PloS one‎
  • 2014‎

Hyperbaric oxygen (HBO) preconditioning (HBO-PC) has been testified to have protective effects on spinal cord injury (SCI). However, the mechanisms remain enigmatic. The present study aimed to explore the effects of HBO-PC on primary rat spinal neurons against oxidative injury and oxygen-glucose deprivation (OGD) and the relationship with heat shock proteins (HSPs).


Androgenic regulation of beta-defensins in the mouse epididymis.

  • Shuang-Gang Hu‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2014‎

The majority of beta-defensin family members are exclusively expressed in the epididymis, and some members have been shown to play essential roles in sperm maturation and fertility in rats, mice and humans. Therefore, beta-defensins are hypothesized to be potential targets for contraception and infertility diagnosis and treatment. Clarifying the regulatory mechanisms for the expression of these genes is necessary. Androgen/androgen receptor (AR) signaling plays an important regulatory role in epididymal structure and function. However, very little is known about the androgenic regulation on the production and secretion of the epididymal beta-defensins.


Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model.

  • Xuan Wang‎ et al.
  • Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine‎
  • 2014‎

The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.


Molecular cytogenetic analyses of Epinephelus bruneus and Epinephelus moara (Perciformes, Epinephelidae).

  • Minglan Guo‎ et al.
  • PeerJ‎
  • 2014‎

Genus Epinephelus (Perciformes, Epinephelidae), commonly known as groupers, are usually difficult in species identification for the lack and/or change of morphological specialization. In this study, molecular cytogenetic analyses were firstly performed to identify the closely related species Epinephelus bruneus and E. moara in this genus. The species-specific differences of both fish species showed in karyotype, chromosomal distribution of nucleolar organizer regions (NORs) and localization of 18S rDNA. The heterochromatin (interstitial C-bands) and distribution pattern of telomere (TTAGGG) n in E. bruneus revealed the chromosomal rearrangements and different karyotypic evolutionary characteristics compared to those in E. moara. The cytogenetic data suggested that the lineages of E. bruneus and E. moara were recently derived within the genus Epinephelus, and E. moara exhibited more plesiomorphic features than E. bruneus. All results confirmed that E. moara, which has long been considered a synonym of E. bruneus, is a distinct species in the family Epinephelidae. In addition, molecular cytogenetic analyses are useful in species differentiation and phylogenetic reconstruction in groupers.


Noninvasive prenatal diagnosis of 21-Hydroxylase deficiency using target capture sequencing of maternal plasma DNA.

  • Dingyuan Ma‎ et al.
  • Scientific reports‎
  • 2017‎

Here, we aimed to validate a noninvasive method using capture sequencing for prenatal diagnosis of congenital adrenal hyperplasia due to 21-Hydroxylase deficiency (21-OHD). Noninvasive prenatal diagnosis (NIPD) of 21-OHD was based on 14 plasma samples collected from 12 families, including four plasma sample collected during the first trimester. Targeted capture sequencing was performed using genomic DNA from the parents and child trios to determine the pathogenic and wild-type alleles associated with the haplotypes. Maternal plasma DNA was also sequenced to determine the fetal inheritance of the allele using hidden Markov model-based haplotype linkage analysis. The effect of fetal DNA fraction and sequencing depth on the accuracy of NIPD was investigated. The lower limit of fetal DNA fraction was 2% and the threshold mean sequence depth was 38, suggesting potential advantage if used in early gestation. The CYP21A2 genotype of the fetus was accurately determined in all the 14 plasma samples as early as day 1 and 8 weeks of gestation. Results suggest the accuracy and feasibility of NIPD of 21-OHD using a small target capture region with a low threshold for fetal DNA fraction and sequence depth. Our method is cost-effective and suggests diagnostic applications in clinical practice.


Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle.

  • Yonghua Su‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

The Chinese traditional medicine Shikonin is an ideal drug due to its multiple targets to tumor cells. But in clinics, improving its aqueous solubility and tumor accumulation is still a challenge. Herein, a copolymer with tunable poly(N-isopropylacrymaide) and polylactic acid block lengths is designed, synthesized, and characterized in nuclear magnetic resonance. The corresponding thermosensitive nanomicelle (TN) with well-defined core-shell structure is then assembled in an aqueous solution. For promoting the therapeutic index, the physical-chemistry properties of TNs including narrow size, low critical micellar concentration, high serum stability, tunable volume phase transition temperature (VPTT), high drug-loading capacity, and temperature-controlled drug release are systematically investigated and regulated through the fine self-assembly. The shikonin is then entrapped in a degradable inner core resulting in a shikonin-loaded thermosensitive nanomicelle (STN) with a VPTT of ~40°C. Compared with small-molecular shikonin, the in vitro cellular internalization and cytotoxicity of STN against breast cancer cells (Michigan Cancer Foundation-7) are obviously enhanced. In addition, the therapeutic effect is further enhanced by the programmed cell death (PCD) specifically evoked by shikonin. Interestingly, both the proliferation inhibition and PCD are synergistically promoted as T > VPTT, namely the temperature-regulated passive targeting. Consequently, as intravenous injection is administered to the BALB/c nude mice bearing breast cancer, the intratumor accumulation of STNs is significantly increased as T > VPTT, which is regulated by the in-house developed heating device. The in vivo antitumor assays against breast cancer further confirm the synergistically enhanced therapeutic efficiency. The findings of this study indicate that STN is a potential effective nanoformulation in clinical cancer therapy.


Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03.

  • Benwei Zhu‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

A gene, encoding a new alginate lyase AlgNJU-03, was cloned from marine bacteria Vibrio sp. NJU-03. The recombinant alginate lyase was characterized followed by being purified by NTA-Ni Sepharose. It exhibited the highest activity (6468.99U/mg) at pH 7.0 and 30°C. Interestingly, AlgNJU-03 possessed broader substrate specificity and high activity toward both polyM (poly β-d-mannuronate) and polyG (poly α-l-guluronate), indicating that it is a bifunctional alginate lyase. Furthermore, Km of AlgNJU-03toward polyG (4.00mM) is lower than those toward alginate (8.50mM) and polyM (10.94mM), demonstrating that the enzyme has a higher affinity to polyG. Meanwhile, the catalytic efficiency (Kcat/Km) toward polyG (11.47s-1/mM) is much higher than those toward sodium alginate (3.60s-1/mM) and polyM (0.50s-1/mM). ESI-MS analysis suggested that AlgNJU-03 mainly released disaccharides, trisaccharides and tetrasaccharides from the three kinds of substrates in an endolytic manner. Therefore, it may be a potential tool to produce alginate oligosaccharides with low DP.


A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response.

  • Yongcan Zhou‎ et al.
  • Developmental and comparative immunology‎
  • 2019‎

Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one β-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known β-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.


Inhibition of Circulating miR-194-5p Reverses Osteoporosis through Wnt5a/β-Catenin-Dependent Induction of Osteogenic Differentiation.

  • Bobin Mi‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2020‎

Mesenchymal stem cells (MSCs) critically contribute to bone formation, and proper induction of osteogenic differentiation can lead to an increase in bone mass. In the present study, we reported that an increased miR-194-5p level in plasma is inversely related to the degree of bone formation in osteoporosis patients. We also noted that increased miR-194-5p in the MSCs of ovariectomized (OVX) mice and agomiR-194-5p manipulation of miR-194-5p significantly suppressed bone formation, both in aged and OVX mice. Furthermore, our in vitro study showed that overexpression of miR-194-5p suppresses osteogenic differentiation, as evidenced by the decreased bone formation marker genes and matrix mineralization. The luciferase assay indicated that Wnt family member 5a (Wnt5a) is a target gene of miR-194-5p that positively regulates osteogenic differentiation. Collectively, these data indicated that miR-194-5p inhibition may be a potential strategy for osteoporosis prevention.


Cas12a-Activated Universal Field-Deployable Detectors for Bacterial Diagnostics.

  • Yun Sun‎ et al.
  • ACS omega‎
  • 2020‎

Field-deployable detectors of disease biomarkers provide a simple and fast analysis of clinical specimens. However, most of the existing field-deployable diagnostics have poor sensitivity and are not suitable for the detection of biomarkers with low abundance. Herein, we report a highly sensitive and rapid colorimetric readout paper-based assay for pathogen detection by integrating the unique collateral activity of a Cas12a-activated universal field-deployable detector (CUFD). The collateral effect of Cas12a results in a nonspecific destruction of a fluorophore biotin-labeled ssDNA reporter for the CUFD. This technique can quantify seven different kinds of pathogens in blood samples without any purification procedure, with sensitivity as low as 10 aM for the Shigella dysenteriae DNA. This CUFD technique has significant potential for the detection of pathogenic DNA as well as other types of DNA or RNA targets at the point-of-care application.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: