Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

A Cytosine Methyltransferase Modulates the Cell Envelope Stress Response in the Cholera Pathogen [corrected].

  • Michael C Chao‎ et al.
  • PLoS genetics‎
  • 2015‎

DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential σE cell envelope stress pathway is dispensable in ∆vchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes.


Differential effects of apolipoprotein E isoforms on lipolysis of very low-density lipoprotein triglycerides.

  • Masumi Hara‎ et al.
  • Metabolism: clinical and experimental‎
  • 2006‎

Apolipoprotein (apo) E plays a key role in lipoprotein metabolism and has been proposed to modulate triglyceride (TG) lipolysis. However, no systematic investigation on lipolysis using all 3 isoforms of apoE has been performed. To clarify the role of common human apoE isoforms in the lipolysis of very low-density lipoprotein (VLDL) TGs, we overexpressed human apoE isoforms in apoE and low-density lipoprotein receptor-deficient mice using adenoviral-mediated gene transfer and used VLDL particles obtained from these mice for in vitro lipolysis assay. Overexpression of apoE, regardless of its isoforms, increased the TG content of VLDL in mice in vivo. In vitro analysis of the effect of apoE on lipolysis revealed that irrespective of its isoforms, apoE did inhibit TG lipolysis at every concentration of apoE examined, and this inhibitory effect became more pronounced as the apoE content of VLDL increased. No difference was observed in TG lipolysis activity among isoforms at low apoE/TG ratio; however, intermediate ratios of apoE/TG, which reflect physiologic VLDL apoE/TG ratios, demonstrated a significantly greater level of lipolysis inhibition in apoE2, but less so in apoE4 compared with other isoforms. This differential effect by apoE isoforms on lipolysis was attenuated at higher apoE/TG ratios; nevertheless, apoE2 still inhibited lipolysis significantly more than did apoE4. Enrichment of VLDL with apoE decreased both the apoC contents and apoC-II/C-III ratios of VLDL, contributing, at least in part, to the inhibitory function of apoE on lipolysis. The present study clarifies the differential lipolysis-modulating effect of apoE isoforms, which would help explain the difference in pre- and postprandial TG levels among humans carrying different apoE isoforms.


Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability.

  • Yusuke Sakai‎ et al.
  • Nature communications‎
  • 2019‎

In bacterial tRNAs, 5-carboxymethoxyuridine (cmo5U) and its derivatives at the first position of the anticodon facilitate non-Watson-Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. However, their biogenesis and physiological roles remained to be investigated. Using reverse genetics and comparative genomics, we identify two factors responsible for 5-hydroxyuridine (ho5U) formation, which is the first step of the cmo5U synthesis: TrhP (formerly known as YegQ), a peptidase U32 family protein, is involved in prephenate-dependent ho5U formation; and TrhO (formerly known as YceA), a rhodanese family protein, catalyzes oxygen-dependent ho5U formation and bypasses cmo5U biogenesis in a subset of tRNAs under aerobic conditions. E. coli strains lacking both trhP and trhO exhibit a temperature-sensitive phenotype, and decode codons ending in G (GCG and UCG) less efficiently than the wild-type strain. These findings confirm that tRNA hydroxylation ensures efficient decoding during protein synthesis.


Types of intraparenchymal hematoma as a predictor after revascularization in patients with anterior circulation acute ischemic stroke.

  • Yusuke Morinaga‎ et al.
  • Surgical neurology international‎
  • 2021‎

Intracranial hemorrhage after revascularization for acute ischemic stroke is associated with poor outcomes. Few reports have examined the relationship between parenchymal hematoma after revascularization and clinical outcomes. This retrospective study aimed to investigate the risk factors and clinical outcomes of parenchymal hematoma after revascularization for acute ischemic stroke.


Microbial decomposition of biodegradable plastics on the deep-sea floor.

  • Taku Omura‎ et al.
  • Nature communications‎
  • 2024‎

Microbes can decompose biodegradable plastics on land, rivers and seashore. However, it is unclear whether deep-sea microbes can degrade biodegradable plastics in the extreme environmental conditions of the seafloor. Here, we report microbial decomposition of representative biodegradable plastics (polyhydroxyalkanoates, biodegradable polyesters, and polysaccharide esters) at diverse deep-sea floor locations ranging in depth from 757 to 5552 m. The degradation of samples was evaluated in terms of weight loss, reduction in material thickness, and surface morphological changes. Poly(L-lactic acid) did not degrade at either shore or deep-sea sites, while other biodegradable polyesters, polyhydroxyalkanoates, and polysaccharide esters were degraded. The rate of degradation slowed with water depth. We analysed the plastic-associated microbial communities by 16S rRNA gene amplicon sequencing and metagenomics. Several dominant microorganisms carried genes potentially encoding plastic-degrading enzymes such as polyhydroxyalkanoate depolymerases and cutinases/polyesterases. Analysis of available metagenomic datasets indicated that these microorganisms are present in other deep-sea locations. Our results confirm that biodegradable plastics can be degraded by the action of microorganisms on the deep-sea floor, although with much less efficiency than in coastal settings.


Prognostic impact of detecting viable circulating tumour cells in gastric cancer patients using a telomerase-specific viral agent: a prospective study.

  • Hiroaki Ito‎ et al.
  • BMC cancer‎
  • 2012‎

The identification of circulating tumour cells (CTCs) in peripheral blood is a useful approach to estimate prognosis, monitor disease progression, and measure treatment effects in various malignancies. However, clinical relevance of CTCs is controversial. We attempted to detect viable CTCs in the peripheral blood of gastric cancer patients using a telomerase-specific viral agent.


Deconvoluting the composition of low-frequency hepatitis C viral quasispecies: comparison of genotypes and NS3 resistance-associated variants between HCV/HIV coinfected hemophiliacs and HCV monoinfected patients in Japan.

  • Masato Ogishi‎ et al.
  • PloS one‎
  • 2015‎

Pre-existing low-frequency resistance-associated variants (RAVs) may jeopardize successful sustained virological responses (SVR) to HCV treatment with direct-acting antivirals (DAAs). However, the potential impact of low-frequency (∼0.1%) mutations, concatenated mutations (haplotypes), and their association with genotypes (Gts) on the treatment outcome has not yet been elucidated, most probably owing to the difficulty in detecting pre-existing minor haplotypes with sufficient length and accuracy. Herein, we characterize a methodological framework based on Illumina MiSeq next-generation sequencing (NGS) coupled with bioinformatics of quasispecies reconstruction (QSR) to realize highly accurate variant calling and genotype-haplotype detection. The core-to-NS3 protease coding sequences in 10 HCV monoinfected patients, 5 of whom had a history of blood transfusion, and 11 HCV/HIV coinfected patients with hemophilia, were studied. Simulation experiments showed that, for minor variants constituting more than 1%, our framework achieved a positive predictive value (PPV) of 100% and sensitivities of 91.7-100% for genotyping and 80.6% for RAV screening. Genotyping analysis indicated the prevalence of dominant Gt1a infection in coinfected patients (6/11 vs 0/10, p = 0.01). For clinical samples, minor genotype overlapping infection was prevalent in HCV/HIV coinfected hemophiliacs (10/11) and patients who experienced whole-blood transfusion (4/5) but none in patients without exposure to blood (0/5). As for RAV screening, the Q80K/R and S122K/R variants were particularly prevalent among minor RAVs observed, detected in 12/21 and 6/21 cases, respectively. Q80K was detected only in coinfected patients, whereas Q80R was predominantly detected in monoinfected patients (1/11 vs 7/10, p < 0.01). Multivariate interdependence analysis revealed the previously unrecognized prevalence of Gt1b-Q80K, in HCV/HIV coinfected hemophiliacs [Odds ratio = 13.4 (3.48-51.9), p < 0.01]. Our study revealed the distinct characteristics of viral quasispecies between the subgroups specified above and the feasibility of NGS and QSR-based genetic deconvolution of pre-existing minor Gts, RAVs, and their interrelationships.


Biogenesis and iron-dependency of ribosomal RNA hydroxylation.

  • Satoshi Kimura‎ et al.
  • Nucleic acids research‎
  • 2017‎

Post-transcriptional modifications of ribosomal RNAs (rRNAs) are involved in ribosome biogenesis and fine-tuning of translation. 5-Hydroxycytidine (ho5C), a modification of unknown biogenesis and function, is present at position 2501 of Escherichia coli 23S rRNA. We conducted a genome-wide screen in E. coli to identify genes required for ho5C2501 formation, and found a previously-uncharacterized gene, ydcP (renamed rlhA), iron-sulfur cluster (isc) genes, and a series of genes responsible for prephenate biosynthesis, indicating that iron-sulfur clusters and prephenate are required for ho5C2501 formation. RlhA interacted with precursors of the 50S ribosomal subunit, suggesting that this protein is directly involved in formation of ho5C2501. RlhA belongs to a family of enzymes with an uncharacterized peptidase U32 motif and conserved Cys residues in the C-terminal region. These elements were essential for ho5C2501 formation. We also found that the frequency of ho5C2501 is modulated by environmental iron concentration. Together, our results reveal a novel biosynthetic pathway for RNA hydroxylation and its response to iron.


Highly accurate colorectal cancer prediction model based on Raman spectroscopy using patient serum.

  • Hiroaki Ito‎ et al.
  • World journal of gastrointestinal oncology‎
  • 2020‎

Colorectal cancer (CRC) is an important disease worldwide, accounting for the second highest number of cancer-related deaths and the third highest number of new cancer cases. The blood test is a simple and minimally invasive diagnostic test. However, there is currently no blood test that can accurately diagnose CRC.


Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity.

  • Satoshi Kimura‎ et al.
  • Nucleic acids research‎
  • 2012‎

Modifications of rRNAs are clustered in functional regions of the ribosome. In Helix 74 of Escherichia coli 23S rRNA, guanosines at positions 2069 and 2445 are modified to 7-methylguanosine(m(7)G) and N(2)-methylguanosine(m(2)G), respectively. We searched for the gene responsible for m(7)G2069 formation, and identified rlmL, which encodes the methyltransferase for m(2)G2445, as responsible for the biogenesis of m(7)G2069. In vitro methylation of rRNA revealed that rlmL encodes a fused methyltransferase responsible for forming both m(7)G2069 and m(2)G2445. We renamed the gene rlmKL. The N-terminal RlmL activity for m(2)G2445 formation was significantly enhanced by the C-terminal RlmK. Moreover, RlmKL had an unwinding activity of Helix 74, facilitating cooperative methylations of m(7)G2069 and m(2)G2445 during biogenesis of 50S subunit. In fact, we observed that RlmKL was involved in the efficient assembly of 50S subunit in a mutant strain lacking an RNA helicase deaD.


Long-term prognostic impact of circulating tumour cells in gastric cancer patients.

  • Hiroaki Ito‎ et al.
  • World journal of gastroenterology‎
  • 2016‎

To analyse the long-term prognostic impact of circulating tumour cells (CTCs) in gastric cancer patients who underwent surgery.


Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota.

  • Keisuke Nakashima‎ et al.
  • Nature communications‎
  • 2018‎

Mammalian gut microbiota are integral to host health. However, how this association began remains unclear. We show that in basal chordates the gut space is radially compartmentalized into a luminal part where food microbes pass and an almost axenic peripheral part, defined by membranous delamination of the gut epithelium. While this membrane, framed with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned fish, intestines harbor indigenous microbes, but chitinous membranes segregate these luminal microbes from the surrounding mucus layer. These data suggest that chitin-based barrier immunity is an ancient system, the loss of which, at least in mammals, provided mucus layers as a novel niche for microbial colonization. These findings provide a missing link for intestinal immune systems in animals, revealing disparate mucosal environment in model organisms and highlighting the loss of a proven system as innovation.


Relationship between CCL22 Expression by Vascular Smooth Muscle Cells and Macrophage Histamine Receptors in Atherosclerosis.

  • Satoshi Kimura‎ et al.
  • Journal of atherosclerosis and thrombosis‎
  • 2018‎

CCL22, mainly synthesized by monocyte-derived alternative (M2) macrophages, belongs to the CC family of chemokines and is involved in monocyte migration and recruitment. We have previously investigated CCL22 and histamine in atherosclerosis. Here, we investigated the hypothesis that CCL22 is involved in atherosclerosis, which is influenced by the differentiation of macrophage phenotypes via histamine.


Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment.

  • Sho Watanabe‎ et al.
  • PNAS nexus‎
  • 2022‎

Extracellular vesicles (EVs) contain various regulatory molecules and mediate intercellular communications. Although EVs are secreted from various cell types, including skeletal muscle cells, and are present in the blood, their identity is poorly characterized in vivo, limiting the identification of their origin in the blood. Since skeletal muscle is the largest organ in the body, it could substantially contribute to circulating EVs as their source. However, due to the lack of defined markers that distinguish skeletal muscle-derived EVs (SkM-EVs) from others, whether skeletal muscle releases EVs in vivo and how much SkM-EVs account for plasma EVs remain poorly understood. In this work, we perform quantitative proteomic analyses on EVs released from C2C12 cells and human iPS cell-derived myocytes and identify potential marker proteins that mark SkM-EVs. These markers we identified apply to in vivo tracking of SkM-EVs. The results show that skeletal muscle makes only a subtle contribution to plasma EVs as their source in both control and exercise conditions in mice. On the other hand, we demonstrate that SkM-EVs are concentrated in the skeletal muscle interstitium. Furthermore, we show that interstitium EVs are highly enriched with the muscle-specific miRNAs and repress the expression of the paired box transcription factor Pax7, a master regulator for myogenesis. Taken together, our findings confirm previous studies showing that skeletal muscle cells release exosome-like EVs with specific protein and miRNA profiles in vivo and suggest that SkM-EVs mainly play a role within the muscle microenvironment where they accumulate.


The two-component response regulator OrrA confers dehydration tolerance by regulating avaKa expression in the cyanobacterium Anabaena sp. strain PCC 7120.

  • Satoshi Kimura‎ et al.
  • Environmental microbiology‎
  • 2022‎

The cyanobacterium Anabaena sp. strain PCC 7120 exhibits dehydration tolerance. The regulation of gene expression in response to dehydration is crucial for the acquisition of dehydration tolerance, but the molecular mechanisms underlying dehydration responses remain unknown. In this study, the functions of the response regulator OrrA in the regulation of salt and dehydration responses were investigated. Disruption of orrA abolished or diminished the induction of hundreds of genes in response to salt stress and dehydration. Thus, OrrA is a principal regulator of both stress responses. In particular, OrrA plays a crucial role in dehydration tolerance because an orrA disruptant completely lost the ability to regrow after dehydration. Moreover, in the OrrA regulon, avaKa encoding a protein of unknown function was revealed to be indispensable for dehydration tolerance. OrrA and AvaK are conserved among the terrestrial cyanobacteria, suggesting their conserved functions in dehydration tolerance in cyanobacteria.


Macrophage CCL22 expression promotes lymphangiogenesis in patients with tongue squamous cell carcinoma via IL-4/STAT6 in the tumor microenvironment.

  • Satoshi Kimura‎ et al.
  • Oncology letters‎
  • 2021‎

The C-C motif chemokine ligand 22 (CCL22) chemokine is produced by M2-like tumor-associated macrophages (TAMs) in the tumor microenvironment. Chemokine C-C motif receptor 4 (CCR4), the CCL22 receptor, on T helper2 (Th2) cells leads to a Th2 cytokine-dominant environment. In our previous study, lymph node metastasis was the main predictor of tongue squamous cell carcinoma (SCC) via CCL22. Therefore, the present study aimed to investigate the effects of CCL22 and a Th2 cytokine-predominant tumor microenvironment on vascular endothelial growth factor (VEGF)-C expression and lymphangiogenesis. The post-operative courses of 110 patients with early-stage tongue SCC with a histopathological diagnosis based on the 8th TNM classification were followed up (mean/median follow-up time, 47.1/42.0 months) from surgery until death or the last follow-up visit, and subsequent lymph node relapse was assessed. Lymphangiogenesis and the immunohistochemical expression of several markers (CCL22, CCR4 and VEGF-C) were evaluated. The Kaplan-Meier method was used to plot lymph node relapse-free survival and overall survival curves, which were compared using the log-rank test. In vitro, the association between CCL22 and VEGF-C by interleukin (IL)-4/signal transducer and activator of transcription 6 (STAT6) stimulation was examined. Lymphangiogenesis was significantly associated with lymph node relapse (P<0.001) and a CCL22+ macrophage ratio (P<0.001). CCL22+ TAMs were positive for VEGF-C and surrounded by CCR4+ cells. Additionally, VEGF-C expression was increased in IL-4/STAT6-stimulated macrophages. In addition, the STAT6 signaling pathway was activated in the SCC cells in the deeply invaded part of the tumor along with the aggregated macrophages. In conclusion, TAM CCL22 expression led to lymph node relapse via VEGF-C expression within the tumor microenvironment and the IL-4/STAT6 signaling pathway in early stage tongue SCC. Additionally, the worst pattern of invasion and depth of invasion were revealed to be useful parameters for lymph node relapse in patients with tongue SCC. The present study suggested that CCL22 contributed to the role of M2-like differentiated TAMs in prognosis and lymph node relapse via IL-4/STAT6 and VEGF. The IL-4/STAT6 signaling pathway may be a new molecular target for tongue SCC.


Molecular Mass and Localization of α-1,3-Glucan in Cell Wall Control the Degree of Hyphal Aggregation in Liquid Culture of Aspergillus nidulans.

  • Ken Miyazawa‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

α-1,3-Glucan is one of the main polysaccharides in the cell wall of filamentous fungi. Aspergillus nidulans has two α-1,3-glucan synthase genes, agsA and agsB. We previously revealed that AgsB is a major α-1,3-glucan synthase in vegetative hyphae, but the function of AgsA remained unknown because of its low expression level and lack of phenotypic alteration upon gene disruption. To clarify the role of α-1,3-glucan in hyphal aggregation, we constructed strains overexpressing agsA (agsAOE ) or agsB (agsBOE ), in which the other α-1,3-glucan synthase gene was disrupted. In liquid culture, the wild-type and agsBOE strains formed tightly aggregated hyphal pellets, whereas agsAOE hyphae aggregated weakly. We analyzed the chemical properties of cell wall α-1,3-glucan from the agsAOE and agsBOE strains. The peak molecular mass of α-1,3-glucan from the agsAOE strain (1,480 ± 80 kDa) was much larger than that from the wild type (147 ± 52 kDa) and agsBOE (372 ± 47 kDa); however, the peak molecular mass of repeating subunits in α-1,3-glucan was almost the same (after Smith degradation: agsAOE , 41.6 ± 5.8 kDa; agsBOE , 38.3 ± 3.0 kDa). We also analyzed localization of α-1,3-glucan in the cell wall of the two strains by fluorescent labeling with α-1,3-glucan-binding domain-fused GFP (AGBD-GFP). α-1,3-Glucan of the agsBOE cells was clearly located in the outermost layer, whereas weak labeling was detected in the agsAOE cells. However, the agsAOE cells treated with β-1,3-glucanase were clearly labeled with AGBD-GFP. These observations suggest that β-1,3-glucan covered most of α-1,3-glucan synthesized by AgsA, although a small amount of α-1,3-glucan was still present in the outer layer. We also constructed a strain with disruption of the amyG gene, which encodes an intracellular α-amylase that synthesizes α-1,4-glucooligosaccharide as a primer for α-1,3-glucan biosynthesis. In this strain, the hyphal pellets and peak molecular mass of α-1,3-glucan (94.5 ± 1.4 kDa) were smaller than in the wild-type strain, and α-1,3-glucan was still labeled with AGBD-GFP in the outermost layer. Overall, these results suggest that hyphal pellet formation depends on the molecular mass and spatial localization of α-1,3-glucan as well as the amount of α-1,3-glucan in the cell wall of A. nidulans.


An in vitro reproduction of stress-induced memory defects: Effects of corticoids on dendritic spine dynamics.

  • Shinichi Saito‎ et al.
  • Scientific reports‎
  • 2016‎

Previously, in organotypic slice culture of rodent hippocampus we found that three repeated inductions of LTP, but not a single induction, led to a slow-developing long-lasting enhancement of synaptic strength coupled with synapse formation. Naming this structural plasticity RISE (repetitive LTP-induced synaptic enhancement) and assuming it to be a potential in vitro reproduction of repetition-dependent memory consolidation, we are analyzing its cellular mechanisms. Here, we applied a glucocorticoid to the culture to mimic acute excess stress and demonstrated its blockade of RISE. Since excess stress interferes with behavioral memory consolidation, the parallelism between RISE in vitro and memory consolidation in vivo is supported. We recently reported that RISE developed after stochastic processes. Here we found that the glucocorticoid interfered with RISE by suppressing the increment of dendritic spine fluctuation that precedes a net increase in spine density. The present study provides clues for understanding the mechanism of stress-induced memory defects.


Discovery of the β-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs.

  • Satoshi Kimura‎ et al.
  • Nucleic acids research‎
  • 2014‎

Methylation is a versatile reaction involved in the synthesis and modification of biologically active molecules, including RNAs. N(6)-methyl-threonylcarbamoyl adenosine (m(6)t(6)A) is a post-transcriptional modification found at position 37 of tRNAs from bacteria, insect, plants, and mammals. Here, we report that in Escherichia coli, yaeB (renamed as trmO) encodes a tRNA methyltransferase responsible for the N(6)-methyl group of m(6)t(6)A in tRNA(Thr) specific for ACY codons. TrmO has a unique single-sheeted β-barrel structure and does not belong to any known classes of methyltransferases. Recombinant TrmO employs S-adenosyl-L-methionine (AdoMet) as a methyl donor to methylate t(6)A to form m(6)t(6)A in tRNA(Thr). Therefore, TrmO/YaeB represents a novel category of AdoMet-dependent methyltransferase (Class VIII). In a ΔtrmO strain, m(6)t(6)A was converted to cyclic t(6)A (ct(6)A), suggesting that t(6)A is a common precursor for both m(6)t(6)A and ct(6)A. Furthermore, N(6)-methylation of t(6)A enhanced the attenuation activity of the thr operon, suggesting that TrmO ensures efficient decoding of ACY. We also identified a human homolog, TRMO, indicating that m(6)t(6)A plays a general role in fine-tuning of decoding in organisms from bacteria to mammals.


Effectiveness of corticosteroids for post-extubation stridor and extubation failure in pediatric patients: a systematic review and meta-analysis.

  • Satoshi Kimura‎ et al.
  • Annals of intensive care‎
  • 2020‎

While the results of previous meta-analyses have shown beneficial effects of corticosteroid therapy on post-extubation stridor and extubation failure in adults, these results might not be generalizable to children because of the differences in anatomy and structure. We aimed to determine the benefits of corticosteroids on those outcomes in pediatric populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: