2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential effects of apolipoprotein E isoforms on lipolysis of very low-density lipoprotein triglycerides.

Metabolism: clinical and experimental | 2006

Apolipoprotein (apo) E plays a key role in lipoprotein metabolism and has been proposed to modulate triglyceride (TG) lipolysis. However, no systematic investigation on lipolysis using all 3 isoforms of apoE has been performed. To clarify the role of common human apoE isoforms in the lipolysis of very low-density lipoprotein (VLDL) TGs, we overexpressed human apoE isoforms in apoE and low-density lipoprotein receptor-deficient mice using adenoviral-mediated gene transfer and used VLDL particles obtained from these mice for in vitro lipolysis assay. Overexpression of apoE, regardless of its isoforms, increased the TG content of VLDL in mice in vivo. In vitro analysis of the effect of apoE on lipolysis revealed that irrespective of its isoforms, apoE did inhibit TG lipolysis at every concentration of apoE examined, and this inhibitory effect became more pronounced as the apoE content of VLDL increased. No difference was observed in TG lipolysis activity among isoforms at low apoE/TG ratio; however, intermediate ratios of apoE/TG, which reflect physiologic VLDL apoE/TG ratios, demonstrated a significantly greater level of lipolysis inhibition in apoE2, but less so in apoE4 compared with other isoforms. This differential effect by apoE isoforms on lipolysis was attenuated at higher apoE/TG ratios; nevertheless, apoE2 still inhibited lipolysis significantly more than did apoE4. Enrichment of VLDL with apoE decreased both the apoC contents and apoC-II/C-III ratios of VLDL, contributing, at least in part, to the inhibitory function of apoE on lipolysis. The present study clarifies the differential lipolysis-modulating effect of apoE isoforms, which would help explain the difference in pre- and postprandial TG levels among humans carrying different apoE isoforms.

Pubmed ID: 16839851 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NIH Image (tool)

RRID:SCR_003073

Public image processing and analysis program for Macintosh.

View all literature mentions