Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Eastern equine encephalitis in children, Massachusetts and New Hampshire,USA, 1970-2010.

  • Michael A Silverman‎ et al.
  • Emerging infectious diseases‎
  • 2013‎

We describe the clinical, laboratory, and radiographic characteristics of 15 cases of eastern equine encephalitis in children during 1970-2010. The most common clinical and laboratory features were fever, headache, seizures, peripheral leukocytosis, and cerebrospinal fluid neutrophilic pleocytosis. Radiographic lesions were found in the basal ganglia, thalami, and cerebral cortex. Clinical outcomes included severe neurologic deficits in 5 (33%) patients, death of 4 (27%), full recovery of 4 (27%), and mild neurologic deficits in 2 (13%). We identify an association between a short prodrome and an increased risk for death or for severe disease.


Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging.

  • Ziming Du‎ et al.
  • Nature protocols‎
  • 2019‎

Multiplexed tissue imaging enables precise, spatially resolved enumeration and characterization of cell types and states in human resection specimens. A growing number of methods applicable to formalin-fixed, paraffin-embedded (FFPE) tissue sections have been described, the majority of which rely on antibodies for antigen detection and mapping. This protocol provides step-by-step procedures for confirming the selectivity and specificity of antibodies used in fluorescence-based tissue imaging and for the construction and validation of antibody panels. Although the protocol is implemented using tissue-based cyclic immunofluorescence (t-CyCIF) as an imaging platform, these antibody-testing methods are broadly applicable. We demonstrate assembly of a 16-antibody panel for enumerating and localizing T cells and B cells, macrophages, and cells expressing immune checkpoint regulators. The protocol is accessible to individuals with experience in microscopy and immunofluorescence; some experience in computation is required for data analysis. A typical 30-antibody dataset for 20 FFPE slides can be generated within 2 weeks.


HAND1 and BARX1 Act as Transcriptional and Anatomic Determinants of Malignancy in Gastrointestinal Stromal Tumor.

  • Matthew L Hemming‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2021‎

Gastrointestinal stromal tumor (GIST) arises from interstitial cells of Cajal (ICC) or their precursors, which are present throughout the gastrointestinal tract. Although gastric GIST is commonly indolent and small intestine GIST more aggressive, a molecular understanding of disease behavior would inform therapy decisions in GIST. Although a core transcription factor (TF) network is conserved across GIST, accessory TFs HAND1 and BARX1 are expressed in a disease state-specific pattern. Here, we characterize two divergent transcriptional programs maintained by HAND1 and BARX1, and evaluate their association with clinical outcomes.


Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic.

  • Erik A Williams‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Genomic studies of high-grade/progressive meningiomas have reported a heterogeneous mutation spectrum, identifying few recurrently mutated genes. Most studies have been underpowered to detect genomic subclasses of aggressive meningiomas due to relatively small number of available samples. Here, we present a genomic survey of one of the largest multi-institutional cohorts of high-grade/progressive meningiomas to date.


Mechanisms and therapeutic implications of hypermutation in gliomas.

  • Mehdi Touat‎ et al.
  • Nature‎
  • 2020‎

A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution.

  • Orit Rozenblatt-Rosen‎ et al.
  • Cell‎
  • 2020‎

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.


Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy.

  • Kazuhiro Koikawa‎ et al.
  • Cell‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors.

  • Megan L Burger‎ et al.
  • Cell‎
  • 2021‎

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.


Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery.

  • Sankha S Basu‎ et al.
  • NPJ breast cancer‎
  • 2021‎

Optimal resection of breast tumors requires removing cancer with a rim of normal tissue while preserving uninvolved regions of the breast. Surgical and pathological techniques that permit rapid molecular characterization of tissue could facilitate such resections. Mass spectrometry (MS) is increasingly used in the research setting to detect and classify tumors and has the potential to detect cancer at surgical margins. Here, we describe the ex vivo intraoperative clinical application of MS using a liquid micro-junction surface sample probe (LMJ-SSP) to assess breast cancer margins. In a midpoint analysis of a registered clinical trial, surgical specimens from 21 women with treatment naïve invasive breast cancer were prospectively collected and analyzed at the time of surgery with subsequent histopathological determination. Normal and tumor breast specimens from the lumpectomy resected by the surgeon were smeared onto glass slides for rapid analysis. Lipidomic profiles were acquired from these specimens using LMJ-SSP MS in negative ionization mode within the operating suite and post-surgery analysis of the data revealed five candidate ions separating tumor from healthy tissue in this limited dataset. More data is required before considering the ions as candidate markers. Here, we present an application of ambient MS within the operating room to analyze breast cancer tissue and surgical margins. Lessons learned from these initial promising studies are being used to further evaluate the five candidate biomarkers and to further refine and optimize intraoperative MS as a tool for surgical guidance in breast cancer.


Temporal and spatial topography of cell proliferation in cancer.

  • Giorgio Gaglia‎ et al.
  • Nature cell biology‎
  • 2022‎

Proliferation is a fundamental trait of cancer cells, but its properties and spatial organization in tumours are poorly characterized. Here we use highly multiplexed tissue imaging to perform single-cell quantification of cell cycle regulators and then develop robust, multivariate, proliferation metrics. Across diverse cancers, proliferative architecture is organized at two spatial scales: large domains, and smaller niches enriched for specific immune lineages. Some tumour cells express cell cycle regulators in the (canonical) patterns expected of freely growing cells, a phenomenon we refer to as 'cell cycle coherence'. By contrast, the cell cycles of other tumour cell populations are skewed towards specific phases or exhibit non-canonical (incoherent) marker combinations. Coherence varies across space, with changes in oncogene activity and therapeutic intervention, and is associated with aggressive tumour behaviour. Thus, multivariate measures from high-plex tissue images capture clinically significant features of cancer proliferation, a fundamental step in enabling more precise use of anti-cancer therapies.


High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers.

  • Jia-Ren Lin‎ et al.
  • Nature cancer‎
  • 2023‎

Precision medicine is critically dependent on better methods for diagnosing and staging disease and predicting drug response. Histopathology using hematoxylin and eosin (H&E)-stained tissue (not genomics) remains the primary diagnostic method in cancer. Recently developed highly multiplexed tissue imaging methods promise to enhance research studies and clinical practice with precise, spatially resolved single-cell data. Here, we describe the 'Orion' platform for collecting H&E and high-plex immunofluorescence images from the same cells in a whole-slide format suitable for diagnosis. Using a retrospective cohort of 74 colorectal cancer resections, we show that immunofluorescence and H&E images provide human experts and machine learning algorithms with complementary information that can be used to generate interpretable, multiplexed image-based models predictive of progression-free survival. Combining models of immune infiltration and tumor-intrinsic features achieves a 10- to 20-fold discrimination between rapid and slow (or no) progression, demonstrating the ability of multimodal tissue imaging to generate high-performance biomarkers.


Multiplexed 3D Analysis of Cell Plasticity and Immune Niches in Melanoma.

  • Clarence Yapp‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Homeostasis of normal tissues and the emergence of diseases such as cancer are controlled by changes in the proportions and states of diverse cell types, cell-cell interactions, and acellular components of the tissue microenvironment1. Spatial omics using highly multiplexed tissue profiling2 makes it possible to study these processes in situ, usually on thin, 4-5 micron thick sections (the standard histopathology format)3. Microscopy-based tissue imaging is commonly performed at a resolution sufficient to determine cell types but not detect the subtle morphological features associated with cytoskeletal reorganisation, juxtracrine signalling, or membrane trafficking4. Here we introduce a 3D imaging approach using existing instruments and reagents that is able to characterize a wide variety of organelles and structures at sub-micron scale while simultaneously quantifying millimetre-scale spatial features. We perform high-resolution 54-plex cyclic immunofluorescence (CyCIF) imaging3 on sections of primary human melanoma thick enough (30-40 microns) to fully encompass two or more layers of intact cells. In pre-invasive melanoma in situ5, 3D imaging of entire cell volumes showed that transformed melanocytic cells are plastic in state and participate in tightly localised niches of interferon signalling near sites of initial invasion into the underlying dermis. Below this layer, immune cells engaged in an unexpectedly diverse array of membrane-membrane interactions as well as looser "neighbourhood" associations6. These data provide new insight into the transitions occurring during early tumour formation and demonstrate the potential for phenotyping tissues at a level of detail previously restricted to cultured cells and organoids.


Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas.

  • Priscilla K Brastianos‎ et al.
  • Nature genetics‎
  • 2014‎

Craniopharyngiomas are epithelial tumors that typically arise in the suprasellar region of the brain. Patients experience substantial clinical sequelae from both extension of the tumors and therapeutic interventions that damage the optic chiasm, the pituitary stalk and the hypothalamic area. Using whole-exome sequencing, we identified mutations in CTNNB1 (β-catenin) in nearly all adamantinomatous craniopharyngiomas examined (11/12, 92%) and recurrent mutations in BRAF (resulting in p.Val600Glu) in all papillary craniopharyngiomas (3/3, 100%). Targeted genotyping revealed BRAF p.Val600Glu in 95% of papillary craniopharyngiomas (36 of 39 tumors) and mutation of CTNNB1 in 96% of adamantinomatous craniopharyngiomas (51 of 53 tumors). The CTNNB1 and BRAF mutations were clonal in each tumor subtype, and we detected no other recurrent mutations or genomic aberrations in either subtype. Adamantinomatous and papillary craniopharyngiomas harbor mutations that are mutually exclusive and clonal. These findings have important implications for the diagnosis and treatment of these neoplasms.


Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome.

  • Peter Tsvetkov‎ et al.
  • eLife‎
  • 2015‎

Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.


Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells.

  • Mikko Taipale‎ et al.
  • Nature biotechnology‎
  • 2013‎

The interaction between the HSP90 chaperone and its client kinases is sensitive to the conformational status of the kinase, and stabilization of the kinase fold by small molecules strongly decreases chaperone interaction. Here we exploit this observation and assay small-molecule binding to kinases in living cells, using chaperones as 'thermodynamic sensors'. The method allows determination of target specificities of both ATP-competitive and allosteric inhibitors in the kinases' native cellular context in high throughput. We profile target specificities of 30 diverse kinase inhibitors against >300 kinases. Demonstrating the value of the assay, we identify ETV6-NTRK3 as a target of the FDA-approved drug crizotinib (Xalkori). Crizotinib inhibits proliferation of ETV6-NTRK3-dependent tumor cells with nanomolar potency and induces the regression of established tumor xenografts in mice. Finally, we show that our approach is applicable to other chaperone and target classes by assaying HSP70/steroid hormone receptor and CDC37/kinase interactions, suggesting that chaperone interactions will have broad application in detecting drug-target interactions in vivo.


The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection.

  • Claire Marie Filone‎ et al.
  • PLoS pathogens‎
  • 2014‎

The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.


Clinical Identification of Oncogenic Drivers and Copy-Number Alterations in Pituitary Tumors.

  • Wenya Linda Bi‎ et al.
  • Endocrinology‎
  • 2017‎

Pituitary tumors are the second most common adult primary brain tumor, with a variable clinical course. Recent work has identified a number of genetic determinants of pituitary tumor subtypes, which may augment traditional histopathologic classification schemes. We sought to determine whether pituitary tumors could be stratified based on objective molecular characteristics using a clinical genomics assay. We performed a retrospective analysis of patients operated on at the Brigham and Women's Hospital from 2012 to 2016 whose pituitary tumors were profiled using multiplexed next-generation sequencing. We analyzed 127 pituitary tumors, including 114 adenomas, 5 craniopharyngiomas, and 8 tumors of other histologies. We observed recurrent BRAFV600E mutations in papillary craniopharyngiomas, CTNNB1 mutations in adamantinomatous craniopharyngiomas, and activating GNAS mutations in growth hormone-secreting adenomas. Furthermore, we validated the presence of two distinct genomic subclasses in adenomas (i.e., those with disrupted or quiet copy-number profiles) and the significant association of disruption with functional hormone status (P < 0.05). We report the clinical implementation of next-generation sequencing of pituitary tumors. We confirmed previously identified molecular subclasses for these tumors and show that routine screening as part of clinical practice is both feasible and informative. This large-scale proof-of-principle study may help to guide future institutional efforts for pituitary tumor classification as well as the incorporation of such techniques into prospective analysis as part of clinical trials.


Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes.

  • Jia-Ren Lin‎ et al.
  • eLife‎
  • 2018‎

The architecture of normal and diseased tissues strongly influences the development and progression of disease as well as responsiveness and resistance to therapy. We describe a tissue-based cyclic immunofluorescence (t-CyCIF) method for highly multiplexed immuno-fluorescence imaging of formalin-fixed, paraffin-embedded (FFPE) specimens mounted on glass slides, the most widely used specimens for histopathological diagnosis of cancer and other diseases. t-CyCIF generates up to 60-plex images using an iterative process (a cycle) in which conventional low-plex fluorescence images are repeatedly collected from the same sample and then assembled into a high-dimensional representation. t-CyCIF requires no specialized instruments or reagents and is compatible with super-resolution imaging; we demonstrate its application to quantifying signal transduction cascades, tumor antigens and immune markers in diverse tissues and tumors. The simplicity and adaptability of t-CyCIF makes it an effective method for pre-clinical and clinical research and a natural complement to single-cell genomics.


CRX is a diagnostic marker of retinal and pineal lineage tumors.

  • Sandro Santagata‎ et al.
  • PloS one‎
  • 2009‎

CRX is a homeobox transcription factor whose expression and function is critical to maintain retinal and pineal lineage cells and their progenitors. To determine the biologic and diagnostic potential of CRX in human tumors of the retina and pineal, we examined its expression in multiple settings.


Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations.

  • Christopher J Lengner‎ et al.
  • Cell‎
  • 2010‎

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: