2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells.

Nature biotechnology | 2013

The interaction between the HSP90 chaperone and its client kinases is sensitive to the conformational status of the kinase, and stabilization of the kinase fold by small molecules strongly decreases chaperone interaction. Here we exploit this observation and assay small-molecule binding to kinases in living cells, using chaperones as 'thermodynamic sensors'. The method allows determination of target specificities of both ATP-competitive and allosteric inhibitors in the kinases' native cellular context in high throughput. We profile target specificities of 30 diverse kinase inhibitors against >300 kinases. Demonstrating the value of the assay, we identify ETV6-NTRK3 as a target of the FDA-approved drug crizotinib (Xalkori). Crizotinib inhibits proliferation of ETV6-NTRK3-dependent tumor cells with nanomolar potency and induces the regression of established tumor xenografts in mice. Finally, we show that our approach is applicable to other chaperone and target classes by assaying HSP70/steroid hormone receptor and CDC37/kinase interactions, suggesting that chaperone interactions will have broad application in detecting drug-target interactions in vivo.

Pubmed ID: 23811600 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDCR NIH HHS, United States
    Id: UL1-DE019585
  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NCI NIH HHS, United States
    Id: P30 CA014051
  • Agency: NIDCR NIH HHS, United States
    Id: UL1 DE019585
  • Agency: NIGMS NIH HHS, United States
    Id: RL1-GM084437
  • Agency: NCI NIH HHS, United States
    Id: RL1-CA133834
  • Agency: NHGRI NIH HHS, United States
    Id: RL1 HG004671
  • Agency: NCI NIH HHS, United States
    Id: RL1 CA133834
  • Agency: NIGMS NIH HHS, United States
    Id: RL1 GM084437
  • Agency: NHGRI NIH HHS, United States
    Id: RL1-HG004671

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


LIMMA (tool)

RRID:SCR_010943

Software package for the analysis of gene expression microarray data, especially the use of linear models for analyzing designed experiments and the assessment of differential expression.

View all literature mentions

Dako (tool)

RRID:SCR_013530

An Antibody supplier; Dako was purchased by Agilent in 2012 and several years later the websites began to reflect the Dako products as part of the Agilent catalog.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions