Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Antimicrobial Susceptibility Testing Using the MYCO Test System and MIC Distribution of 8 Drugs against Clinical Isolates of Nontuberculous Mycobacteria from Shanghai.

  • Ruoyan Ying‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Given the increased incidence and prevalence of nontuberculous mycobacterial (NTM) diseases and the natural resistance of NTM to multiple antibiotics, in vitro susceptibility testing of different NTM species against drugs from the MYCO test system and new applied drugs is required. A total of 241 NTM clinical isolates were analyzed, including 181 slowly growing mycobacteria (SGM) and 60 rapidly growing mycobacteria (RGM). The Sensititre SLOMYCO and RAPMYCO panels were used for testing susceptibility to commonly used anti-NTM antibiotics. Furthermore, MIC distributions were determined against 8 potential anti-NTM drugs, including vancomycin (VAN), bedaquiline (BDQ), delamanid (DLM), faropenem (FAR), meropenem (MEM), clofazimine (CLO), cefoperazone-avibactam (CFP-AVI), and cefoxitin (FOX), and epidemiological cutoff values (ECOFFs) were analyzed using ECOFFinder. The results showed that most of the SGM strains were susceptible to amikacin (AMK), clarithromycin (CLA), and rifabutin (RFB) from the SLOMYCO panels and BDQ and CLO from the 8 applied drugs, while RGM strains were susceptible to tigecycline (TGC) from the RAPMYCO panels and also BDQ and CLO. The ECOFFs of CLO were 0.25, 0.25, 0.5, and 1 μg/mL for the mycobacteria M. kansasii, M. avium, M. intracellulare, and M. abscessus, respectively, and the ECOFF of BDQ was 0.5 μg/mL for the same four prevalent NTM species. Due to the weak activity of the other 6 drugs, no ECOFF was determined. This study on the susceptibility of NTM includes 8 potential anti-NTM drugs and a large sample size of Shanghai clinical isolates and demonstrates that BDQ and CLO had efficient activities against different NTM species in vitro, which can be applied to the treatment of NTM diseases. IMPORTANCE We designed customized panel that contains 8 repurposed drugs, including vancomycin (VAN), bedaquiline (BDQ), delamanid (DLM), faropenem (FAR), meropenem (MEM), clofazimine (CLO), cefoperazone-avibactam (CFP-AVI), and cefoxitin (FOX) from the MYCO test system. To better understand the efficacy of these 8 drugs against different NTM species, we determined the MICs of 241 NTM isolates collected in Shanghai, China. We attempted to define the tentative epidemiological cutoff values (ECOFFs) for the most prevalent NTM species, which is an important factor in setting up the breakpoint for a drug susceptibility testing. We used the MYCO test system as an automatic quantitative drug sensitivity test of NTM and extended the method to BDQ and CLO in this study. The MYCO test system complements commercial microdilution systems that currently lack BDQ and CLO detection.


Use of Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Complex Drug Resistance from Early Positive Liquid Cultures.

  • Xiaocui Wu‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Our objective was to evaluate the performance of whole-genome sequencing (WGS) from early positive liquid cultures for predicting Mycobacterium tuberculosis complex (MTBC) drug resistance. Clinical isolates were obtained from tuberculosis patients at Shanghai Pulmonary Hospital (SPH). Antimicrobial susceptibility testing (AST) was performed, and WGS from early Bactec mycobacterial growth indicator tube (MGIT) 960-positive liquid cultures was performed to predict the drug resistance using the TB-Profiler informatics platform. A total of 182 clinical isolates were enrolled in this study. Using phenotypic AST as the gold standard, the overall sensitivity and specificity for WGS were, respectively, 97.1% (89.8 to 99.6%) and 90.4% (83.4 to 95.1%) for rifampin, 91.0% (82.4 to 96.3%) and 95.2% (89.1 to 98.4%) for isoniazid, 100.0% (89.4 to 100.0%) and 87.3% (80.8 to 92.1%) for ethambutol, 96.6% (88.3 to 99.6%) and 61.8% (52.6 to 70.4%) for streptomycin, 86.8% (71.9 to 95.6%) and 95.8% (91.2 to 98.5%) for moxifloxacin, 86.5% (71.2 to 91.5%) and 95.2% (90.3 to 98.0%) for ofloxacin, 100.0% (54.1 to 100.0%) and 67.6% (60.2 to 74.5%) for amikacin, 100.0% (63.1 to 100.0%) and 67.2% (59.7 to 74.2%) for kanamycin, 62.5% (24.5 to 91.5%) and 88.5% (82.8 to 92.8%) for ethionamide, 33.3% (4.3 to 77.7%) and 98.3% (95.1 to 99.7%) for para-aminosalicylic acid, and 0.0% (0.0 to 12.3%) and 100.0% (97.6 to 100.0%) for cycloserine. The concordances of WGS-based AST and phenotypic AST were as follows: rifampin (92.9%), isoniazid (93.4%), ethambutol (89.6%), streptomycin (73.1%), moxifloxacin (94.0%), ofloxacin (93.4%), amikacin (68.7%), kanamycin (68.7%), ethionamide (87.4%), para-aminosalicylic acid (96.2%) and cycloserine (84.6%). We conclude that WGS could be a promising approach to predict MTBC resistance from early positive liquid cultures. IMPORTANCE In this study, we used whole-genome sequencing (WGS) from early positive liquid (MGIT) cultures instead of solid cultures to predict drug resistance of 182 Mycobacterium tuberculosis complex (MTBC) clinical isolates to predict drug resistance using the TB-Profiler informatics platform. Our study indicates that WGS may be a promising method for predicting MTBC resistance using early positive liquid cultures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: