Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Antimicrobial Susceptibility Testing Using the MYCO Test System and MIC Distribution of 8 Drugs against Clinical Isolates of Nontuberculous Mycobacteria from Shanghai.

Microbiology spectrum | 2023

Given the increased incidence and prevalence of nontuberculous mycobacterial (NTM) diseases and the natural resistance of NTM to multiple antibiotics, in vitro susceptibility testing of different NTM species against drugs from the MYCO test system and new applied drugs is required. A total of 241 NTM clinical isolates were analyzed, including 181 slowly growing mycobacteria (SGM) and 60 rapidly growing mycobacteria (RGM). The Sensititre SLOMYCO and RAPMYCO panels were used for testing susceptibility to commonly used anti-NTM antibiotics. Furthermore, MIC distributions were determined against 8 potential anti-NTM drugs, including vancomycin (VAN), bedaquiline (BDQ), delamanid (DLM), faropenem (FAR), meropenem (MEM), clofazimine (CLO), cefoperazone-avibactam (CFP-AVI), and cefoxitin (FOX), and epidemiological cutoff values (ECOFFs) were analyzed using ECOFFinder. The results showed that most of the SGM strains were susceptible to amikacin (AMK), clarithromycin (CLA), and rifabutin (RFB) from the SLOMYCO panels and BDQ and CLO from the 8 applied drugs, while RGM strains were susceptible to tigecycline (TGC) from the RAPMYCO panels and also BDQ and CLO. The ECOFFs of CLO were 0.25, 0.25, 0.5, and 1 μg/mL for the mycobacteria M. kansasii, M. avium, M. intracellulare, and M. abscessus, respectively, and the ECOFF of BDQ was 0.5 μg/mL for the same four prevalent NTM species. Due to the weak activity of the other 6 drugs, no ECOFF was determined. This study on the susceptibility of NTM includes 8 potential anti-NTM drugs and a large sample size of Shanghai clinical isolates and demonstrates that BDQ and CLO had efficient activities against different NTM species in vitro, which can be applied to the treatment of NTM diseases. IMPORTANCE We designed customized panel that contains 8 repurposed drugs, including vancomycin (VAN), bedaquiline (BDQ), delamanid (DLM), faropenem (FAR), meropenem (MEM), clofazimine (CLO), cefoperazone-avibactam (CFP-AVI), and cefoxitin (FOX) from the MYCO test system. To better understand the efficacy of these 8 drugs against different NTM species, we determined the MICs of 241 NTM isolates collected in Shanghai, China. We attempted to define the tentative epidemiological cutoff values (ECOFFs) for the most prevalent NTM species, which is an important factor in setting up the breakpoint for a drug susceptibility testing. We used the MYCO test system as an automatic quantitative drug sensitivity test of NTM and extended the method to BDQ and CLO in this study. The MYCO test system complements commercial microdilution systems that currently lack BDQ and CLO detection.

Pubmed ID: 36802218 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions